Large deflection behavior of functionally graded plates under pressure loads

2006 ◽  
Vol 75 (1-4) ◽  
pp. 67-71 ◽  
Author(s):  
S.A.M. GhannadPour ◽  
M.M. Alinia
2007 ◽  
Vol 07 (02) ◽  
pp. 193-211 ◽  
Author(s):  
H. R. OVESY ◽  
S. A. M. GHANNADPOUR

Description is given for a finite strip method for analyzing the large deflection response of simply supported rectangular functionally graded plates under normal pressure loading. The material properties of the functionally graded plates are assumed to vary continuously through the thickness of the plate, according to the simple power law and exponential law distribution. Both distributions of material properties are used to examine the stress variations. The fundamental equations for rectangular plates of functionally graded material (FGM) are obtained by discretizing the plate into some finite strips, which are developed by combining the Von–Karman theory for large transverse deflection and the concept of functionally graded material. The solution is obtained by the minimization of the total potential energy. The Newton–Raphson method is used to solve the non-linear equilibrium equations. Numerical results for square functionally graded plates are given in dimensionless graphical forms, and compared to the available results, wherever possible. The effects of material properties on the stress field through the thickness and on the variation of the central deflection at a given value of normal pressure loading are determined and discussed.


2011 ◽  
Vol 471-472 ◽  
pp. 709-714 ◽  
Author(s):  
Mohammad Homayoun Sadr-Lahidjani ◽  
Mohammad Hajikazemi ◽  
Mona Ramezani-Oliaee

Large deflection analysis of thin and relatively thick rectangular functionally graded plates is studied in this paper. It is assumed that the mechanical properties of the plate, graded through the thickness, are described by a simple power law distribution in terms of the volume fractions of constituents. The plate is assumed to be under lateral pressure load. The fundamental equations for rectangular plates of FGM are obtained using the classical laminated plate theory (CLPT), first order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT) for large deflection and the solution is obtained by minimization of the total potential energy.


Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


Sign in / Sign up

Export Citation Format

Share Document