scholarly journals Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams

2017 ◽  
Vol 179 ◽  
pp. 77-88 ◽  
Author(s):  
S. Sahmani ◽  
M.M. Aghdam

Author(s):  
Farzad Ebrahimi ◽  
Mohammad R Barati

In this paper, size-dependent free vibration analysis of curved functionally graded nanobeams embedded in Winkler–Pasternak elastic medium is carried out via an analytical solution method. Three kinds of boundary condition namely, simply supported-simply supported, simply supported-clamped and clamped-clamped are investigated. Material properties of curved functionally graded beam change in thickness direction according to the Mori–Tanaka model. Nonlocal strain gradient elasticity theory is adopted to capture the size effects in which the stress is considered for not only the nonlocal stress field but also the strain gradients stress field. Nonlocal governing equations of curved functionally graded nanobeam are obtained from Hamilton’s principle based on Euler–Bernoulli beam model. Finally, the influences of length scale parameter, nonlocal parameter, opening angle, elastic medium, material composition, slenderness ratio and boundary conditions on the vibrational characteristics of nanosize curved functionally graded beams are explored.



2013 ◽  
Vol 30 (2) ◽  
pp. 161-172 ◽  
Author(s):  
R. Ansari ◽  
M. Faghih Shojaei ◽  
V. Mohammadi ◽  
R. Gholami ◽  
H. Rouhi

ABSTRACTBased on the Timoshenko beam model, the nonlinear vibration of microbeams made of functionally graded (FG) materials is investigated under different boundary conditions. To consider small scale effects, the model is developed based on the most general form of strain gradient elasticity. The nonlinear governing equations and boundary conditions are derived via Hamilton's principle and then discretized using the generalized differential quadrature technique. A pseudo-Galerkin approach is used to reduce the set of discretized governing equations into a time-varying set of ordinary differential equations of Duffing-type. The harmonic balance method in conjunction with the Newton-Raphson method is also applied so as to solve the problem in time domain. The effects of boundary conditions, length scale parameters, material gradient index and geometrical parameters are studied. It is found that the importance of the small length scale is affected by the type of boundary conditions and vibration mode. Also, it is revealed that the classical theory tends to underestimate the vibration amplitude and linear frequency of FG microbeams.



Author(s):  
N. D. Anh ◽  
D. V. Hieu

The nonlinear free vibration of embedded nanotubes under longitudinal magnetic field is studied in this paper. The governing equation for the nanotube is formulated by employing Euler – Bernoulli beam model and the nonlocal strain gradient theory. The analytical expression of the nonlinear frequency of the nanotube is obtained by using Galerkin method and the equivalent linearization method with the weighted averaging value. The accuracy of the obtained solution has been verified by comparison with the published solutions and the exact solution. The influences of the nonlocal parameter, material length scale parameter, aspect ratio, diameter ratio, Winkler parameter and longitudinal magnetic field on the nonlinear vibration responses of the nanotubes with pinned-pinned and clamped-clamped boundary conditions are investigated and discussed.



2018 ◽  
Vol 38 (1) ◽  
pp. 122-142 ◽  
Author(s):  
Mohammad Arefi ◽  
Mahmoud Pourjamshidian ◽  
Ali Ghorbanpour Arani ◽  
Timon Rabczuk

This research deals with the nonlinear vibration of the functionally graded nano-beams based on the nonlocal elasticity theory considering surface and flexoelectric effects. The flexoelectric functionally graded nano-beam is resting on nonlinear Pasternak foundation. Cubic nonlinearity is assumed for foundation. It is assumed that the material properties of the nano-beam change continuously along the thickness direction according to different patterns of material distribution. In order to include coupling of strain gradients and electrical polarizations in equation of motion, the nonlocal, nonclassical nano-beam model containing flexoelectric effect is employed. In addition, the effects of surface elasticity, di-electricity, and piezoelectricity as well as bulk flexoelectricity are accounted in constitutive relations. The governing equations of motion are derived using Hamilton principle based on first shear deformation beam theory and the nonlocal strain gradient elasticity theory considering residual surface stresses. The differential quadrature method is used to calculate nonlinear natural frequency of flexoelectric functionally graded nano-beam as well as nonlinear vibrational mode shape. After validation of the present numerical results with those results available in literature, full numerical results are presented to investigate the influence of important parameters such as flexoelectric coefficients of the surface and bulk, residual surface stresses, nonlocal parameter, length scale effects (strain gradient parameter), cubic nonlinear Winkler and shear coefficients, power gradient index of functionally graded material, and geometric dimensions on the nonlinear vibration behaviors of flexoelectric functionally graded nano-beam. The numerical results indicate that, considering the flexoelectricity leads to the decrease of the bending stiffness of the flexoelectric functionally graded nano-beams.



Sign in / Sign up

Export Citation Format

Share Document