Experimental and finite element analysis of the long-term behaviour of GFRP-concrete hybrid beams fabricated using adhesive bonding

2019 ◽  
Vol 207 ◽  
pp. 148-165 ◽  
Author(s):  
Ibrahim Alachek ◽  
Nadège Reboul ◽  
Bruno Jurkiewiez
2020 ◽  
Vol 8 (5) ◽  
pp. 358 ◽  
Author(s):  
Yusak Oktavianus ◽  
Massoud Sofi ◽  
Elisa Lumantarna ◽  
Gideon Kusuma ◽  
Colin Duffield

A precast reinforced concrete (RC) T-beam located in seaport Terminal Peti Kemas (TPS) Surabaya built in 1984 is used as a case study to test the accuracy of non-destructive test techniques against more traditional bridge evaluation tools. This bridge is mainly used to connect the berth in Lamong gulf and the port in Java Island for the logistic purposes. The bridge was retrofitted 26 years into its life by adding two strips of carbon fiber reinforced polymer (CFRP) due to excessive cracks observed in the beams. Non-destructive field measurements were compared against a detailed finite element analysis of the structure to predict the performance of the girder in terms of deflection and moment capacity before and after the retrofitting work. The analysis was also used to predict the long-term deflections of the structure due to creep, crack distribution, and the ultimate moment capacity of the individual girder. Moreover, the finite element analysis was used to predict the deflection behavior of the overall bridge due to vehicle loading. Good agreement was obtained between the field measurement and the analytical study. A new service life of the structure considering the corrosion and new vehicle demand is carried out based on field measurement using non-destructive testing. Not only are the specific results beneficial for the Indonesian port authority as the stakeholder to manage this structure, but the approach detailed also paves the way for more efficient evaluation of bridges more generally over their service life.


1987 ◽  
Vol 110 ◽  
Author(s):  
James B. Koeneman

AbstractPredicting the stress state in bones is important to the understanding of bone remodeling and the long-term reliability of total joint implants. Beam theory, 2-D and 3-D finite element analysis have been used to calculate stress distributions. These finite element analyses of bone structures are progressing from crude models for which the clinical relevance has been questioned to an important tool which is necessary to understand stress related bone changes.


2021 ◽  
Author(s):  
Ibrahim M. Al Awadhi ◽  
Ashok M. Sharma ◽  
Sohail Akhter

Abstract Objective/Scope (25 - 75 word) Shell & Tube Heat exchangers are critical for incessant operation of processing plant. These exchangers may face integrity threats due to reduction in shell thicknesses at Nozzle to Shell Junction below design code requirements. This paper presents the Cost Effective fit for purpose approach utilizing advance Finite Element analysis to explore and recommend the solutions for existing numerous exchangers that are to be safely used even after reported low thickness on account of manufacturing imperfection. Methods, Procedures, Process (75 - 100 word) Reduction in Shell thickness below design value can affect its ability to sustain design pressure & vacuum including nozzle integrity for associated piping loads and service life reduction for exclusion of corrosion allowance. As short-term Mitigation methodology, weld overlay was adopted to restore the areas with lower thickness. For long term solution, fit for purpose review approach was adopted for continued usage of exchangers which involves nozzle load analysis using WRC & FEA based on PAUT thickness data and utilizing actual piping loads, derating of design pressure, comparison of thickness data to establish corrosion rate and service life of exchanger. Results, Observations & Conclusions (100 - 200 words) Thorough Integrity review based on design Code (ASME BPVC Section VIII) and WRC analysis have confirmed that majority of the exchangers have thickness higher than that required to sustain design pressure, vacuum conditions when considered with piping loads acting on nozzles. Thickness data comparison between three (03) year old manual UT and latest Phase array UT confirmed that majority of the exchangers are in clean non-corrosive service thus allowance for corrosion is not required. Where in the nature of exchanger service require corrosion allowance, it is considered in analysis and usage of stiffeners at nozzle to shell intersection and/or on full circumference of shell is recommended to prevent overstress due to piping loads / buckling distortion due to vacuum conditions respectively, based on detailed Finite element analysis (FEA). In order to establish more reliable long-term corrosion rate, next inspection after four (04) years is recommended and impact on integrity can be further evaluated based on the latest data. Change in exchanger nameplate is recommended to consider for design pressure as MAWP and accordingly adjust hydro test pressure followed by R-stamp requirements for rerating and repair. Shell side hydro test is restricted until recommendations are implemented Novel/Additive Information (25 - 75 words) Although conventional approach of replacing complete Shells to meet code requirement would have ensured process safety, performance and structural integrity. However, alternative fit for purpose approach utilizing advanced FEA has not only ensured all these but also led to potential cost saving of multimillion US$. Associated risks of thickness reduction due to corrosion may still be observed, however analysis confirmed structural integrity and safety of heat exchangers with low thicknesses. Accordingly, potential risk is mitigated.


2021 ◽  
Vol 21 (12) ◽  
pp. 5906-5911
Author(s):  
Juan Zhang ◽  
Donghui Li ◽  
Bo Zhang

Bearings play a vital role in the operation of a two-axis system. Long-term bearing use inevitably produce bubbles and frictional damage. Therefore, the protection of bearings is critical for the stable operation of a two-axis system. In this study, a TiO2 nanofilm is used to physically protect a bearing. The discretization method is used to analyse the cavitation process. Cavitation primarily occurs on the front surface of the pad during bearing operation. A finite element analysis of a bearing pad coated and not coated with TiO2 nanofilms shows that TiO2 nanofilms can effectively absorb the cavitation force exerted on pads, thereby reducing inflicted damage. Moreover, the TiO2 nanofilm reduces the friction coefficient of the pad surface, promoting good bearing capacity of the bearing during rotation. The TiO2 nanofilm serves as a protective layer that improves the anti-wear and bearing performance of a two-axis system.


2009 ◽  
Vol 38 (9-10) ◽  
pp. 433-443 ◽  
Author(s):  
G. Dean ◽  
L. N. McCartney ◽  
L. Crocker ◽  
R. Mera

Author(s):  
Thomas D. White ◽  
A. Samy Noureldin ◽  
Dwayne Harris ◽  
John E. Haddock

Subsurface drainage is important for long-term pavement performance. Rational procedures to analyze and evaluate the design, reliability, and effectiveness of subsurface drainage systems are needed in order for their use to be recommended with confidence. Three pavement subdrainage test sections were constructed in 1995 on the eastbound driving lane of I-469 in Indiana, at the northern junction with I-69, between Stations 150+05 and 173+40. Presented are the original laboratory characterization and mechanistic evaluation for permanent deformation and stability of the test sections employing finite element analysis. Triaxial tests were conducted on all pavement layers of the sections. Falling weight deflectome-ter evaluations in 1995 and 1998 are also presented. Such measurements are not available after 1998 because compliance with Indiana Department of Transportation safety regulations is required at that location. Finite element analyses were conducted by using laboratory-measured material properties to predict pavement response to falling weight deflec-tometer loads, compare predicted and measured deflections, examine layer shear stability for shear stress and strength, and predict rutting. Long-term pavement performance indicators up until 2007 (including international roughness index and ground penetration radar), after 12 years of heavy truck traffic, are also presented. Finite element analysis predicted very well the deflections measured by the falling weight deflectometer and accumulated rutting of the three test sections. Comparisons of shear stresses and strengths indicated that the sections were stable. All long-term evaluations indicated that all drainage layers in the study sections have performed their function adequately and protected the subgrade.


Sign in / Sign up

Export Citation Format

Share Document