Mesoscale analysis on ultra-high performance steel fibre reinforced concrete slabs under contact explosions

2019 ◽  
Vol 228 ◽  
pp. 111322 ◽  
Author(s):  
Yun Peng ◽  
Chengqing Wu ◽  
Jun Li ◽  
Jian Liu ◽  
Xiangwei Liang
2017 ◽  
Vol 21 (8) ◽  
pp. 1234-1248 ◽  
Author(s):  
Shenchun Xu ◽  
Chengqing Wu ◽  
Zhongxian Liu ◽  
Jun Li

A finite element model is developed to investigate the behaviour of ultra-high-performance steel fibre–reinforced concrete columns under combined axial compression and horizontal monotonic push loading. The effects of steel fibre content, axial compression ratio, reinforcement ratio (or rebar ratio), stirrup ratio and shear span ratio on the structural behaviour of ultra-high-performance steel fibre–reinforced concrete columns are investigated in detail. The numerical model shows good agreement in bond–slip behaviour of specimens based on CEB model results and numerical results, and such behaviour should be taken into consideration in engineering practice. The results indicate that the developed finite element model could predict the structural behaviour and failure mode of ultra-high-performance steel fibre–reinforced concrete columns effectively. It is found that the reinforcement ratio, axial compression ratio, shear span ratio and volume fraction of steel fibre have a great influence on both the structural behaviour and failure modes of specimens.


Sign in / Sign up

Export Citation Format

Share Document