Multi-material topology optimization of piezoelectric composite structures for energy harvesting

2021 ◽  
Vol 265 ◽  
pp. 113783
Author(s):  
Meng He ◽  
Xiaopeng Zhang ◽  
Lucas dos Santos Fernandez ◽  
Alexandre Molter ◽  
Liang Xia ◽  
...  
2012 ◽  
Vol 22 (9) ◽  
pp. 094009 ◽  
Author(s):  
Thomas Lafont ◽  
L Gimeno ◽  
J Delamare ◽  
G A Lebedev ◽  
D I Zakharov ◽  
...  

Author(s):  
Heng Zhang ◽  
Akihiro Takezawa ◽  
Xiaohong Ding ◽  
Shipeng Xu ◽  
Hao Li ◽  
...  

Author(s):  
Yu Li ◽  
Yi Min Xie

Topology optimization techniques based on finite element analysis have been widely used in many fields, but most of the research and applications are based on single-material structures. Extended from the bi-directional evolutionary structural optimization (BESO) method, a new topology optimization technique for 3D structures made of multiple materials is presented in this paper. According to the sum of each element's principal stresses in the design domain, a material more suitable for this element would be assigned. Numerical examples of a steel- concrete cantilever, two different bridges and four floor systems are provided to demonstrate the effectiveness and practical value of the proposed method for the conceptual design of composite structures made of steel and concrete.


2021 ◽  
pp. 1-15
Author(s):  
Yuqing Zhou ◽  
Tsuyoshi Nomura ◽  
Enpei Zhao ◽  
Kazuhiro Saitou

Abstract Variable-axial fiber-reinforced composites allow for local customization of fiber orientation and thicknesses. Despite their significant potential for performance improvement over the conventional multiaxial composites and metals, they pose challenges in design optimization due to the vastly increased design freedom in material orientations. This paper presents an anisotropic topology optimization method for designing large-scale, 3D variable-axial lightweight composite structures subject to multiple load cases. The computational challenges associated with large-scale 3D anisotropic topology optimization with extremely low volume fraction are addressed by a tensor-based representation of 3D orientation that would avoid the 2π periodicity of angular representations such as Euler angles, and an adaptive meshing scheme, which, in conjunction with PDE regularization of the density variables, refines the mesh where structural members appear and coarsens where there is void. The proposed method is applied to designing a heavy-duty drone frame subject to complex multi-loading conditions. Finally, the manufacturability gaps between the optimized design and the fabrication-ready design for Tailored Fiber Placement (TFP) is discussed, which motivates future work toward a fully-automated design synthesis.


Author(s):  
Zheqi Lin ◽  
Hae Chang Gea ◽  
Shutian Liu

Converting ambient vibration energy into electrical energy using piezoelectric energy harvester has attracted much interest in the past decades. In this paper, topology optimization is applied to design the optimal layout of the piezoelectric energy harvesting devices. The objective function is defined as to maximize the energy harvesting performance over a range of ambient vibration frequencies. Pseudo excitation method (PEM) is applied to analyze structural stationary random responses. Sensitivity analysis is derived by the adjoint method. Numerical examples are presented to demonstrate the validity of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document