Vibration analysis of functionally graded beams using a higher-order shear deformable beam model with rational shear stress distribution

2021 ◽  
Vol 277 ◽  
pp. 114586
Author(s):  
Suiyin Chen ◽  
Rong Geng ◽  
Wenxiong Li
Author(s):  
Mohammad Talha ◽  
B. N. Singh

In the present study, an improved higher order theory in conjunction with finite element method (FEM) is presented and is applied to study the nonlinear vibration analysis of shear deformable functionally graded material (FGMs) plates. The present structural model kinematics assumes the cubically varying in-plane displacement over the entire thickness, while the transverse displacement varies quadratically to achieve the accountability of normal strain and its derivative in calculation of transverse shear strains. The theory also satisfies zero transverse strains conditions at the top and bottom faces of the plate, and the geometric nonlinearity is based on Green-Lagrange assumptions. All higher order terms appearing from nonlinear strain displacement relations are incorporated in the formulation. The material properties of the plates are assumed to vary smoothly and continuously throughout the thickness of the plate by a simple power-law distribution in terms of the volume fractions of the constituents. A C0 continuous isoparametric nonlinear FEM with 13 degrees of freedom per node is proposed for the accomplishment of the improved elastic continuum. Numerical results with different system parameters and boundary conditions are accomplished, to show the importance and necessity of the higher order terms in the nonlinear formulations.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Babak Lashkar-Ara ◽  
Niloofar Kalantari ◽  
Zohreh Sheikh Khozani ◽  
Amir Mosavi

One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.


Stroke ◽  
2014 ◽  
Vol 45 (1) ◽  
pp. 261-264 ◽  
Author(s):  
Vitor Mendes Pereira ◽  
Olivier Brina ◽  
Philippe Bijlenga ◽  
Pierre Bouillot ◽  
Ana Paula Narata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document