On the mitigation of the RAPID algorithm uneven sensing network issue employing averaging and Gaussian blur filtering techniques

2021 ◽  
Vol 278 ◽  
pp. 114716
Author(s):  
Alvaro Gonzalez-Jimenez ◽  
Luca Lomazzi ◽  
Francesco Cadini ◽  
Alessio Beligni ◽  
Claudio Sbarufatti ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 5-12
Author(s):  
Adriana Milășan ◽  
◽  
Cristian Molder ◽  
Silviu Dumitrescu ◽  
◽  
...  


2012 ◽  
Vol 3 (4) ◽  
pp. 153-156
Author(s):  
A.Rajamani A.Rajamani ◽  
◽  
Dr.V.Krishnaveni Dr.V.Krishnaveni


2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.







2016 ◽  
Vol 4 (2) ◽  
pp. 1
Author(s):  
PRASAD K. PURUSHOTHAM ◽  
ANURADHA B. ◽  
◽  




2007 ◽  
Vol 2 (1) ◽  
pp. 119-129 ◽  
Author(s):  
Mark G. Simkin

Abstract Many accounting applications use spreadsheets as repositories of accounting records, and a common requirement is the need to extract specific information from them. This paper describes a number of techniques that accountants can use to perform such tasks directly using common spreadsheet tools. These techniques include (1) simple and advanced filtering techniques, (2) database functions, (3) methods for both simple and stratified sampling, and, (4) tools for finding duplicate or unmatched records.



Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4595
Author(s):  
Parisa Asadi ◽  
Lauren E. Beckingham

X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating the internal features of porous rock. Reliable phase segmentation in these images is highly necessary but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective. Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider several extracted features in addition to color attenuation, is a promising and powerful method for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images enables faster data collection and interpretation than traditional methods. This study investigates the performance of several filtering techniques with three machine learning methods and a deep learning method to assess the potential for reliable feature extraction and pixel-level phase segmentation of X-ray CT images. Features were first extracted from images using well-known filters and from the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering, Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified U-Net model, were applied to the extracted input features. The models’ performances were then compared and contrasted to determine the influence of the machine learning method and input features on reliable phase segmentation. The results showed considering more dimensionality has promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94. Feature-based Random Forest demonstrated the best performance among the machine learning models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos and Marcellus, respectively. In general, considering more features provided promising and reliable segmentation results that are valuable for analyzing the composition of dense samples, such as shales, which are significant unconventional reservoirs in oil recovery.



Sign in / Sign up

Export Citation Format

Share Document