Heat Transfer in BCC Lattice Materials: Conduction, Convection, and Radiation

2021 ◽  
pp. 115159
Author(s):  
M. Shahrzadi ◽  
M. Davazdah Emami ◽  
A.H. Akbarzadeh
Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4083
Author(s):  
Lijun Xiao ◽  
Xiao Xu ◽  
Weidong Song ◽  
Menglei Hu

Multi-cell hybrid micro-lattice materials, in which the stretching dominated octet cells were adopted as the strengthen phase while the bending dominated body centered cubic (BCC) lattice was chosen as the soft matrix, were proposed to achieve superior mechanical properties and energy absorption performance. Both stochastic and symmetric distribution of octet cells in the BCC lattice were considered. The cell assembly micromechanics finite element model (FEM) was built and validated by the experimental results. Accordingly, virtual tests were conducted to reveal the stress–strain relationship and deformation patterns of the hybrid lattice specimens. Meanwhile, the influence of reinforcement volume fraction and strut material on the energy absorption ability of the specimens was analyzed. It was concluded that the reinforced octet cells could be adopted to elevate the elastic modulus and collapse strength of the pure BCC micro-lattice material. The multi-cell design could lead to strain hardening in the plateau stress region which resulted in higher plateau stresses and energy absorption capacities. Besides, the symmetric distribution of reinforcements would cause significant stress fluctuations in the plateau region. The obtained results demonstrated that the multi-cell hybrid lattice architectures could be applied to tailor the mechanical behavior and plastic energy absorption performance of micro-lattice materials.


Sign in / Sign up

Export Citation Format

Share Document