The Use of Patient-Specific Implants in Oral and Maxillofacial Surgery

2019 ◽  
Vol 31 (4) ◽  
pp. 593-600 ◽  
Author(s):  
Michael F. Huang ◽  
David Alfi ◽  
Jonathan Alfi ◽  
Andrew T. Huang
2015 ◽  
Vol 6 (4) ◽  
pp. 180-186 ◽  
Author(s):  
Cristina Verea Linares ◽  
Johno Breeze

Mobile telephone texts are the primary method of communication among junior doctors, superseding phone calls and bleeps. However, instant messaging is now one of the most common methods of social communication worldwide, and will likely supersede texting in the near future – but concerns over its security suggest further research is urgently required into the content of such communications, if it is to transmit patient specific information.


2012 ◽  
Vol 5 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Per Dérand ◽  
Lars-Erik Rännar ◽  
Jan-M Hirsch

The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes®, Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and mesh to replace resected bone that can function as a carrier for bone or bone substitutes were designed and tested during reconstructive maxillofacial surgery. A clinically fit, well within the requirements for what is needed and obtained using traditional free hand bending of commercially available devices, or even higher precision, was demonstrated in ablative surgery in four patients.


2017 ◽  
Vol 23 (6) ◽  
pp. 1164-1169 ◽  
Author(s):  
Santosh Kumar Malyala ◽  
Ravi Kumar Y. ◽  
Aditya Mohan Alwala

Purpose This paper aims to present a new design in the area of basal osseointegrated implant (BOI) for oral and maxillofacial surgery using a patient-specific computer-aided design (CAD) and additive manufacturing (AM) approach. The BOI was designed and fabricated according to the patient’s specific requirement, of maxilla stabilisation and dental fixation, a capacity not currently available in conventional BOI. The combination of CAD and AM techniques provides a powerful approach for optimisation and realisation of the implant in a design which helps to minimise blood loss and surgery time, translating into better patient outcomes and reduced financial burdens on healthcare providers. Design/methodology/approach The current study integrates the capabilities of conventional medical imaging techniques, CAD and metal AM to realise the BOI. The patient’s anatomy was scanned using a 128-slice spiral computed tomography scanner into a standard Digital Imaging and Communication in Medicine (DICOM) data output. The DICOM data are processed using MIMICS software to construct a digital representative patient model to aid the design process, and the final customised implant was designed using Creo software. The final, surgically implanted BOI was fabricated using direct metal laser sintering in titanium (Ti-64). Findings The current approach assisted us to design BOI customised to the patient’s unique anatomy to improve patient outcomes. The design realises a nerve relieving option and placement of porous structure at the required area based up on the analysis of patient bone structural data. Originality/value The novelty in this work is that developed BOI comprises a patient-specific design that allows for custom fabrication around the patients' nerves, provides structural support to the compromised maxilla and comprises a dual abutment design, with the capacity of supporting fixation of up to four teeth. Conventional BOIs are only available for a signal abutment capable of holding one or two teeth only. Given the customised nature of the design, the concept could easily be extended to explore a greater number of fixation abutments, abutment length/location, adjusted dental fixation size or greater levels of maxilla support. The study highlights the significance of CAD packages to construct patient-specific solution directly from medical imaging data, and the efficiency of metal AM to translate designs into a functional implant.


2021 ◽  
pp. 194338752110076
Author(s):  
Gabriele Canzi ◽  
Federica Corradi ◽  
Giorgio Novelli ◽  
Alberto Bozzetti ◽  
Davide Sozzi

Study Design: Retrospective study. Objective: Resolution of clinical signs and symptoms following orbital fractures depends on the accurate restoration of the orbital volume. Computer-Assisted procedures and Patient Specific Implants represent modern solutions, but they require additional resources. A more reproducible option is the use of standard preformed titanium meshes, widely available and cheaper; with their use quality of results is proportional to the accuracy with which they are positioned. This work identifies 6 reproducible and constant anatomical landmarks, as an intraoperative guide for the precise positioning of titanium preformed meshes. Methods: 90 patients treated at the Maxillofacial Surgery Department, Niguarda Trauma Center, Milan, for unilateral orbital reconstruction (January 2012 to December 2018), were studied. In all cases reconstruction was performed respecting the 6 proposed anatomical landmarks. The outcomes analyzed are: post-operative CT adherence to the 6 anatomical markers and symmetry achieved respect to controlateral orbit; number/year of re-interventions and duration of surgery; resolution of clinical defects (at least 12-months follow-up); incidence of complications. Results: Satisfactory results were obtained in terms of restoration of orbital size, shape and volume. Clinical defects early recovered with a low incidence of complications and re-interventions. Operating times and radiological accuracy have shown a progressive improvement during years of application of this technique. Conclusions: The proposed “6 anatomical landmarks” is an easy free-hand technique that allows everyone to obtain high levels of reconstructive accuracy and it should be a skill of all surgeons who deal with orbital reconstruction in daily clinical activity.


Author(s):  
Leanne SOBEL ◽  
Katrina SKELLERN ◽  
Kat PEREIRA

Design thinking and human-centred design is often discussed and utilised by teams and organisations seeking to develop more optimal, effective or innovative solutions for better customer outcomes. In the healthcare sector the opportunity presented by the practice of human-centred design and design thinking in the pursuit of better patient outcomes is a natural alignment. However, healthcare challenges often involve complex problem sets, many stakeholders, large systems and actors that resist change. High-levels of investment and risk aversion results in the status quo of traditional technology-led processes and analytical decision-making dominating product and strategy development. In this case study we present the opportunities, challenges and benefits that including a design-led approach in developing complex healthcare technology can bring. Drawing on interviews with participants and reflections from the project team, we explore and articulate the key learning from using a design-led approach. In particular we discuss how design-led practices that place patients at the heart of technology development facilitated the project team in aligning key stakeholders, unearthing critical system considerations, and identifying product and sector-wide opportunities.


Author(s):  
Ibrahim Almutairi ◽  
Abdullah AlQarni ◽  
Mohammad Alharbi ◽  
Ahmed Almutairi ◽  
Mohammed Aldohan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document