Development of JIT patient-specific implants

Author(s):  
Leanne SOBEL ◽  
Katrina SKELLERN ◽  
Kat PEREIRA

Design thinking and human-centred design is often discussed and utilised by teams and organisations seeking to develop more optimal, effective or innovative solutions for better customer outcomes. In the healthcare sector the opportunity presented by the practice of human-centred design and design thinking in the pursuit of better patient outcomes is a natural alignment. However, healthcare challenges often involve complex problem sets, many stakeholders, large systems and actors that resist change. High-levels of investment and risk aversion results in the status quo of traditional technology-led processes and analytical decision-making dominating product and strategy development. In this case study we present the opportunities, challenges and benefits that including a design-led approach in developing complex healthcare technology can bring. Drawing on interviews with participants and reflections from the project team, we explore and articulate the key learning from using a design-led approach. In particular we discuss how design-led practices that place patients at the heart of technology development facilitated the project team in aligning key stakeholders, unearthing critical system considerations, and identifying product and sector-wide opportunities.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Philipp Honigmann ◽  
Neha Sharma ◽  
Brando Okolo ◽  
Uwe Popp ◽  
Bilal Msallem ◽  
...  

Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a “biomimetic” design.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Saeideh Kholghi Eshkalak ◽  
Sunpreet Singh ◽  
Amutha Chinnappan ◽  
Seeram Ramakrishna ◽  
...  

Purpose The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues. Design/methodology/approach Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK. Findings The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics. Originality/value The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.


2020 ◽  
pp. 000183922094848
Author(s):  
Waldemar Kremser ◽  
Blagoy Blagoev

This paper examines the emergence of temporal coordination among multiple interdependent routines in a complex work setting that does not allow for up-front scheduling. We propose that when actors continuously have to prioritize their expected contributions to multiple interdependent routines, they address this challenge by orienting not just toward routines but also toward person-roles. Drawing on an ethnographic study of an agile consulting project team confronted with continued scheduling failures, we demonstrate how the dynamics of prioritizing enabled the actors to resolve what at first appeared to be an irresolvable and highly complex problem of temporal coordination. We add to the literature on routine dynamics and temporality by setting forth the dynamics of prioritizing as an explanation for the temporal patterning of complex work settings. We introduce the notion of role–routine ecologies as a novel way to conceptualize such complex work settings and contribute to developing a performative theory of person-roles and their significance for coordinating.


Author(s):  
Rodrigo Lima Verde Leal

The paper employs the combination of design thinking and product mapping approaches for building key skills and capabilities for technology management during the Fourth Industrial Revolution. It presents an overview of the literature of these two approaches, showing a gap in research that proposes their combination. It defines technology roadmapping planning as a human-centred complex problem and proposes a simple three-step sequence to assess when design thinking is applicable. The paper presents the results of using this approach in a business unit in a private non-profit research and development institute. One is the identification of six different, but interlinked, concepts of technology road-mapping that are relevant to stakeholders. The other is a ―Joint Planning‖ experiment, which suggests that road-mapping planning should rely on the co-creation of all relevant stakeholders and should take place in multiples points of the process, in order to grasp any new learning and context that may arise during the execution of the road-mapping initiative


Author(s):  
Lakshya P. Rathore ◽  
Naina Verma

Additive manufacturing (AM) is a novel technique that despite having been around for more than 35 years, has been underutilized. Its great advantage lies in the basic fact that it is incredibly customizable. Since its use was recognized in various fields of medicine like orthopaedics, otorhinolaryngology, ophthalmology etc, it has proved to be one of the most promising developments in most of them. Customizable orthotics, prosthetics and patient specific implants and tracheal splints are few of its advantages. And in the future too, the combination of tissue engineering with AM is believed to produce an immense change in biological tissue replacement.


2021 ◽  
Vol 11 ◽  
Author(s):  
Henriette L. Möllmann ◽  
Laura Apeltrath ◽  
Nadia Karnatz ◽  
Max Wilkat ◽  
Erik Riedel ◽  
...  

ObjectivesThis retrospective study compared two mandibular reconstruction procedures—conventional reconstruction plates (CR) and patient-specific implants (PSI)—and evaluated their accuracy of reconstruction and clinical outcome.MethodsOverall, 94 patients had undergone mandibular reconstruction with CR (n = 48) and PSI (n = 46). Six detectable and replicable anatomical reference points, identified via computer tomography, were used for defining the mandibular dimensions. The accuracy of reconstruction was assessed using pre- and postoperative differences.ResultsIn the CR group, the largest difference was at the lateral point of the condyle mandibulae (D2) -1.56 mm (SD = 3.8). In the PSI group, the largest difference between preoperative and postoperative measurement was shown at the processus coronoid (D5) with +1.86 mm (SD = 6.0). Significant differences within the groups in pre- and postoperative measurements were identified at the gonion (D6) [t(56) = -2.217; p = .031 <.05]. In the CR group, the difference was 1.5 (SD = 3.9) and in the PSI group -1.04 (SD = 4.9). CR did not demonstrate a higher risk of plate fractures and post-operative complications compared to PSI.ConclusionFor reconstructing mandibular defects, CR and PSI are eligible. In each case, the advantages and disadvantages of these approaches must be assessed. The functional and esthetic outcome of mandibular reconstruction significantly improves with the experience of the surgeon in conducting microvascular grafts and familiarity with computer-assisted surgery. Interoperator variability can be reduced, and training of younger surgeons involved in planning can be reaching better outcomes in the future.


Sign in / Sign up

Export Citation Format

Share Document