scholarly journals Three-dimensional chromatin organization in brain function and dysfunction

2021 ◽  
Vol 69 ◽  
pp. 214-221
Author(s):  
Vishnu Dileep ◽  
Li-Huei Tsai
2016 ◽  
Vol 27 (21) ◽  
pp. 3357-3368 ◽  
Author(s):  
Chen Chen ◽  
Hong Hwa Lim ◽  
Jian Shi ◽  
Sachiko Tamura ◽  
Kazuhiro Maeshima ◽  
...  

Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin—nucleosomes—are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae. Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an “open” configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome–nucleosome associations.


2014 ◽  
Vol 27 (7) ◽  
pp. 749-759 ◽  
Author(s):  
Dana S. Poole ◽  
Esben Plenge ◽  
Dirk H. J. Poot ◽  
Egbert A. J. F. Lakke ◽  
Wiro J. Niessen ◽  
...  

1990 ◽  
Vol 157 (S9) ◽  
pp. 66-75 ◽  
Author(s):  
D. P. Geaney ◽  
M. T. Abou-Saleh

The introduction of single-photon emission computerised tomography (SPECT) has markedly enhanced the study of brain function. The development of SPECT was the culmination of a series of investigations of cerebral blood flow (CBF) pioneered by Kety and Schmidt in the late 1940s combined with the introduction of transmission computerised tomography (CT) in the early 1960s, in which three-dimensional images are derived from two-dimensional data. Positron-emission tomography (PET), in addition to providing information on cerebral blood flow, also allows the evaluation of brain metabolism and neurotransmitter receptor function. However, the technology required for PET is expensive and sophisticated, with little prospect for general clinical application. Fortunately, SPECT is relatively cheap and is widely available for clinical use. We aim to review the principles and basic techniques of SPECT, its present utility and application to clinical practice, and its future potential in the investigation of brain function.


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Tatyana Kuznetsova ◽  
Shuang-Yin Wang ◽  
Nagesha A. Rao ◽  
Amit Mandoli ◽  
Joost H. A. Martens ◽  
...  

2008 ◽  
Vol 100 (5) ◽  
pp. 2966-2976 ◽  
Author(s):  
David D. Cox ◽  
Alexander M. Papanastassiou ◽  
Daniel Oreper ◽  
Benjamin B. Andken ◽  
James J. DiCarlo

Much of our knowledge of brain function has been gleaned from studies using microelectrodes to characterize the response properties of individual neurons in vivo. However, because it is difficult to accurately determine the location of a microelectrode tip within the brain, it is impossible to systematically map the fine three-dimensional spatial organization of many brain areas, especially in deep structures. Here, we present a practical method based on digital stereo microfocal X-ray imaging that makes it possible to estimate the three-dimensional position of each and every microelectrode recording site in “real time” during experimental sessions. We determined the system's ex vivo localization accuracy to be better than 50 μm, and we show how we have used this method to coregister hundreds of deep-brain microelectrode recordings in monkeys to a common frame of reference with median error of <150 μm. We further show how we can coregister those sites with magnetic resonance images (MRIs), allowing for comparison with anatomy, and laying the groundwork for more detailed electrophysiology/functional MRI comparison. Minimally, this method allows one to marry the single-cell specificity of microelectrode recording with the spatial mapping abilities of imaging techniques; furthermore, it has the potential of yielding fundamentally new kinds of high-resolution maps of brain function.


Science ◽  
2019 ◽  
Vol 364 (6439) ◽  
pp. eaat8266 ◽  
Author(s):  
O. Delaneau ◽  
M. Zazhytska ◽  
C. Borel ◽  
G. Giannuzzi ◽  
G. Rey ◽  
...  

Studying the genetic basis of gene expression and chromatin organization is key to characterizing the effect of genetic variability on the function and structure of the human genome. Here we unravel how genetic variation perturbs gene regulation using a dataset combining activity of regulatory elements, gene expression, and genetic variants across 317 individuals and two cell types. We show that variability in regulatory activity is structured at the intra- and interchromosomal levels within 12,583 cis-regulatory domains and 30 trans-regulatory hubs that highly reflect the local (that is, topologically associating domains) and global (that is, open and closed chromatin compartments) nuclear chromatin organization. These structures delimit cell type–specific regulatory networks that control gene expression and coexpression and mediate the genetic effects of cis- and trans-acting regulatory variants on genes.


2007 ◽  
Vol 18 (2) ◽  
pp. 348-361 ◽  
Author(s):  
Patricia C. Abad ◽  
Jason Lewis ◽  
I. Saira Mian ◽  
David W. Knowles ◽  
Jennifer Sturgis ◽  
...  

The coiled-coil protein NuMA is an important contributor to mitotic spindle formation and stabilization. A potential role for NuMA in nuclear organization or gene regulation is suggested by the observations that its pattern of nuclear distribution depends upon cell phenotype and that it interacts and/or colocalizes with transcription factors. To date, the precise contribution of NuMA to nuclear function remains unclear. Previously, we observed that antibody-induced alteration of NuMA distribution in growth-arrested and differentiated mammary epithelial structures (acini) in three-dimensional culture triggers the loss of acinar differentiation. Here, we show that in mammary epithelial cells, NuMA is present in both the nuclear matrix and chromatin compartments. Expression of a portion of the C terminus of NuMA that shares sequence similarity with the chromatin regulator HPC2 is sufficient to inhibit acinar differentiation and results in the redistribution of NuMA, chromatin markers acetyl-H4 and H4K20m, and regions of deoxyribonuclease I-sensitive chromatin compared with control cells. Short-term alteration of NuMA distribution with anti-NuMA C-terminus antibodies in live acinar cells indicates that changes in NuMA and chromatin organization precede loss of acinar differentiation. These findings suggest that NuMA has a role in mammary epithelial differentiation by influencing the organization of chromatin.


2021 ◽  
Vol 15 ◽  
Author(s):  
Foroogh Razavi ◽  
Samira Raminfard ◽  
Hadis Kalantar Hormozi ◽  
Minoo Sisakhti ◽  
Seyed Amir Hossein Batouli

Pineal gland (PG) is a structure located in the midline of the brain, and is considered as a main part of the epithalamus. There are numerous reports on the facilitatory role of this area for brain function; hormone secretion and its role in sleep cycle are the major reports. However, reports are rarely available on the direct role of this structure in brain cognition and in information processing. A suggestion for the limited number of such studies is the lack of a standard atlas for the PG; none of the available MRI templates and atlases has provided parcellations for this structure. In this study, we used the three-dimensional (3D) T1-weighted MRI data of 152 healthy young volunteers, and provided a probabilistic map of the PG in the standard Montreal Neurologic Institute (MNI) space. The methods included collecting the data using a 64-channel head coil on a 3-Tesla Prisma MRI Scanner, manual delineation of the PG by two experts, and robust template and atlas construction algorithms. This atlas is freely accessible, and we hope importing this atlas in the well-known neuroimaging software packages would help to identify other probable roles of the PG in brain function. It could also be used to study pineal cysts, for volumetric analyses, and to test any associations between the cognitive abilities of the human and the structure of the PG.


Sign in / Sign up

Export Citation Format

Share Document