manganese enhanced mri
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 36)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 15 ◽  
Author(s):  
Hiroki Tanihira ◽  
Tomonori Fujiwara ◽  
Satomi Kikuta ◽  
Noriyasu Homma ◽  
Makoto Osanai

Activation-induced manganese-enhanced MRI (AIM-MRI) is an attractive tool for non-invasively mapping whole brain activities. Manganese ions (Mn2+) enter and accumulate in active neurons via calcium channels. Mn2+ shortens the longitudinal relaxation time (T1) of H+, and the longitudinal relaxation rate R1 (1/T1) is proportional to Mn2+ concentration. Thus, AIM-MRI can map neural activities throughout the brain by assessing the R1 map. However, AIM-MRI is still not widely used, partially due to insufficient information regarding Mn2+ dynamics in the brain. To resolve this issue, we conducted a longitudinal study looking at manganese dynamics after systemic administration of MnCl2 by AIM-MRI with quantitative analysis. In the ventricle, Mn2+ increased rapidly within 1 h, remained high for 3 h, and returned to near control levels by 24 h after administration. Microdialysis showed that extracellular Mn returned to control levels by 4 h after administration, indicating a high concentration of extracellular Mn2+ lasts at least about 3 h after administration. In the brain parenchyma, Mn2+ increased slowly, peaked 24–48 h after administration, and returned to control level by 5 days after a single administration and by 2 weeks after a double administration with a 24-h interval. These time courses suggest that AIM-MRI records neural activity 1–3 h after MnCl2 administration, an appropriate timing of the MRI scan is in the range of 24–48 h following systemic administration, and at least an interval of 5 days or a couple of weeks for single or double administrations, respectively, is needed for a repeat AIM-MRI experiment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eugene Kim ◽  
Davide Di Censo ◽  
Mattia Baraldo ◽  
Camilla Simmons ◽  
Ilaria Rosa ◽  
...  

AbstractAmyloid plaques are a hallmark of Alzheimer’s disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.


Open Heart ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. e001646
Author(s):  
Nick B Spath ◽  
Trisha Singh ◽  
Giorgos Papanastasiou ◽  
Andrew Baker ◽  
Rob J Janiczek ◽  
...  

ObjectiveIn a proof-of-concept study, to quantify myocardial viability in patients with acute myocardial infarction using manganese-enhanced MRI (MEMRI), a measure of intracellular calcium handling.MethodsHealthy volunteers (n=20) and patients with ST-elevation myocardial infarction (n=20) underwent late gadolinium enhancement (LGE) using gadobutrol and MEMRI using manganese dipyridoxyl diphosphate. Patients were scanned ≤7 days after reperfusion and rescanned after 3 months. Differential manganese uptake was described using a two-compartment model.ResultsAfter manganese administration, healthy control and remote non-infarcted myocardium showed a sustained 25% reduction in T1 values (mean reductions, 288±34 and 281±12 ms). Infarcted myocardium demonstrated less T1 shortening than healthy control or remote myocardium (1157±74 vs 859±36 and 835±28 ms; both p<0.0001) with intermediate T1 values (1007±31 ms) in peri-infarct regions. Compared with LGE, MEMRI was more sensitive in detecting dysfunctional myocardium (dysfunctional fraction 40.5±11.9 vs 34.9%±13.9%; p=0.02) and tracked more closely with abnormal wall motion (r2=0.72 vs 0.55; p<0.0001). Kinetic modelling showed reduced myocardial manganese influx between remote, peri-infarct and infarct regions, enabling absolute discrimination of infarcted myocardium. After 3 months, manganese uptake increased in peri-infarct regions (16.5±3.5 vs 22.8±3.5 mL/100 g/min, p<0.0001), but not the remote (23.3±2.8 vs 23.0±3.2 mL/100 g/min, p=0.8) or infarcted (11.5±3.7 vs 14.0±1.2 mL/100 g/min, p>0.1) myocardium.ConclusionsThrough visualisation of intracellular calcium handling, MEMRI accurately differentiates infarcted, stunned and viable myocardium, and correlates with myocardial dysfunction better than LGE. MEMRI holds major promise in directly assessing myocardial viability, function and calcium handling across a range of cardiac diseases.Trial registration numbersNCT03607669; EudraCT number 2016-003782-25.


2021 ◽  
pp. 2003987
Author(s):  
Nur Hayati Jasmin ◽  
May Zaw Thin ◽  
Robert D. Johnson ◽  
Laurence H. Jackson ◽  
Thomas A. Roberts ◽  
...  

2021 ◽  
Author(s):  
Eugene Kim ◽  
Davide Di Censo ◽  
Mattia Baraldo ◽  
Camilla Simmons ◽  
Ilaria Rosa ◽  
...  

AbstractSenile plaques are a hallmark of Alzheimer’s disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats.Fourteen mice (eight transgenic, six wild-type) and eight rats (four transgenic, four wild-type) were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4T Bruker scanner. Susceptibility-weighted images, transverse relaxation rate (R2*) maps, and quantitative susceptibility maps were derived from high-resolution 3D multi-gradient-echo (MGE) data to directly visualize plaques. Longitudinal relaxation rate (R1) maps were derived from MP2RAGE data to measure regional manganese uptake. After scanning, the brains were processed for histology and stained for beta-amyloid (4G8 antibody), iron (Perl’s), and calcium/manganese (Alizarin Red).MnCl2 improved signal-to-noise ratio (1.55±0.39-fold increase in MGE images) as expected, although this was not necessary for detection of plaques in the high-resolution images. Plaques were visible in susceptibility-weighted images, R2* maps, and quantitative susceptibility maps, with increased R2* and more positive magnetic susceptibility compared to surrounding tissue.In the 5xFAD mice, most MR-visible plaques were in the hippocampus, though histology confirmed plaques in the cortex and thalamus as well. In the TgF344-AD rats, many more plaques were MR-visible throughout the hippocampus and cortex. Beta-amyloid and iron staining indicate that, in both models, MR visibility was driven by plaque size and iron load.Voxel-wise comparison of R1 maps revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. Interestingly, in contrast to plaque visibility in the high-resolution images, the increased manganese uptake was limited to the rhinencephalon in the TgF344-AD rats (family-wise error (FWE)-corrected p < 0.05) while it was most significantly increased in the cortex of the 5xFAD mice (FWE-corrected p < 0.3). Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats.Multi-parametric MEMRI is a simple, viable method for detecting senile plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.HighlightsThis is the first study to use manganese-enhanced MRI (MEMRI) for direct visualization of senile plaques in rodent models of Alzheimer’s disease, in vivo.Manganese enhancement is not necessary to detect plaques but improves image contrast and signal-to-noise ratio.Manganese binds to plaques in 5xFAD mice but not in TgF344-AD rats, demonstrating potential as a targeted contrast agent for imaging plaques in certain models of AD.


NeuroImage ◽  
2020 ◽  
Vol 223 ◽  
pp. 117343
Author(s):  
Sabrina L. McIlwrath ◽  
Marena A. Montera ◽  
Katherine M. Gott ◽  
Yirong Yang ◽  
Colin M. Wilson ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nazzareno Cannella ◽  
Alejandro Cosa-Linan ◽  
Tatiane Takahashi ◽  
Wolfgang Weber-Fahr ◽  
Rainer Spanagel

Abstract Cocaine addiction develops as a continuum from recreational to habitual and ultimately compulsive drug use. Cocaine addicts show reduced brain activity. However, it is not clear if this condition results from individual predisposing traits or is the result of chronic cocaine intake. A translational neuroimaging approach with an animal model distinguishing non-addict-like vs. addict-like animals may help overcome the limitations of clinical research by comparing controlled experimental conditions that are impossible to obtain in humans. Here we aimed to evaluate neuronal activity in freely moving rats by manganese enhanced magnetic resonance imaging in the 0/3crit model of cocaine addiction. We show that addict-like rats exhibit reduced neuronal activity compared to cocaine-naïve controls during the first week of abstinence. In contrast, cocaine-experienced non-addict-like rats maintained their brain activity at a level comparable to cocaine-naïve controls. We also evaluated brain activity during cocaine bingeing, finding a general reduction of brain activity in cocaine experienced rats independent of an addiction-like phenotype. These findings indicate that brain hypoactivity in cocaine addiction is associated with the development of compulsive use rather than the amount of cocaine consumed, and may be used as a potential biomarker for addiction that clearly distinguishes non-addict-like vs addict-like cocaine use.


NeuroImage ◽  
2020 ◽  
Vol 222 ◽  
pp. 116975 ◽  
Author(s):  
Taylor W. Uselman ◽  
Daniel R. Barto ◽  
Russell E. Jacobs ◽  
Elaine L. Bearer

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0224414
Author(s):  
Gabriella Baio ◽  
Marina Fabbi ◽  
Michele Cilli ◽  
Francesca Rosa ◽  
Simona Boccardo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document