Assessing particle packing based self-consolidating concrete mix design method

2014 ◽  
Vol 70 ◽  
pp. 439-452 ◽  
Author(s):  
Xuhao Wang ◽  
Kejin Wang ◽  
Peter Taylor ◽  
George Morcous
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 623
Author(s):  
Yun-Hong Cheng ◽  
Bao-Long Zhu ◽  
Si-Hui Yang ◽  
Bai-Qiang Tong

According to the basic principle of dense packing of particles, and considering the interaction between particles, a dense packing model of granular materials in concrete was proposed. During the establishment of this model, binary particle packing tests of crushed stone and sand were carried out. The fitting analysis of the test results determines the relationship between the particle size ratio and the remaining volume fraction of the particle packing, and then the actual void fraction of the particle packing was obtained, based on which the water–binder ratio was combined to determine the amount of various materials in the concrete. The proposed concrete mix design method was used to prepare concrete, and its compressive strength and elastic modulus were tested experimentally. The test results show that the aggregate volume fraction of the prepared concrete increased, and the workability of the concrete mixture with the appropriate amount of water reducing agent meets the design requirements. When the water–binder ratio was 0.42, 0.47, or 0.52, the compressive strength of the concrete increased compared with the control concrete, and the degree of improvement in compressive strength increased with the decrease in water–binder ratio; when the water-binder ratio was 0.42, 0.47, or 0.52, the static elastic modulus of the concrete increased compared with the control concrete, and the degree of improvement in elastic modulus also increased with the decrease in water–binder ratio. The elastic modulus and compressive strength of the prepared concrete have a positive correlation. Findings show that the concrete mix design method proposed by this research is feasible and advanced in a sense.


2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Shoib Bashir Wani ◽  
Tahir Hussain Muntazari ◽  
Nusrat Rafique

The various approaches, established for concrete mix design, are not universal because design mixes are explicit to local climate, available materials, and type of exposure. The new-generation mix design method should be developed based on the performance criteria. The concrete strength obtained from the designed concrete mix and optimum cement content should not be considered as the only parameter for the suitability of the concrete mix. This study was carried to compare the proportioning of concrete mixes obtained by following procedures of Indian Standard (IS), American Concrete Institute (ACI) and British Standard (BS) of concrete mix design without the use of admixtures to validate for use in a moderate climate like Kashmir, India. The concrete mixes have been prepared with the necessary 28 days resistance in compression as “15 MPa, 20 MPa, 25 MPa, 30 MPa and 35 MPa”. The assessment of water-cement (w/c) ratio; cement, water, fine aggregate (FA) and coarse aggregate (CA) proportion was carried. The w/c ratio among all formulated mixes is significantly high in the BS method and low for IS method. The BS method uses less quantity and IS method uses the maximum quantity of cement. In addition, the ratio of total aggregate content (TAC) and the aggregate-cement ratio is higher in BS design method as compared to IS and ACI design methods. The aggregate content in ACI mix design appears to be consistent and it added to the relative high compressive strength. The specimens cast following BS guidelines failed to attain the target mean strength (TMS) due to a higher volume of aggregate content, high w/c proportion, less quantity of cement in the mix. The specimens cast by ACI and IS mix design upon compression testing showed higher results than the calculated TMS. The cost analysis per cubic meter of concrete revealed that IS and ACI mix proportioning are expensive than BS method. The IS procedure results in dense concrete followed by ACI procedure. It is expected that with a comprehensive investigation on selected design parameters concentrating more on local challenges, the present study will floor the way for the development and adoption of performance-based design mix selection for moderate climate.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Mohd. Ahmed ◽  
M. N. Qureshi ◽  
Javed Mallick ◽  
Mohd. Abul Hasan ◽  
Mahmoud Hussain

Concrete mix design is the science to obtain concrete proportions of cement, water, and aggregate, based on the particular concrete design method and their mix design parameters. However, the suitability of concrete proportion for high-performance concrete depends on resulting mix factors, namely, water, cement, fine aggregate, and coarse aggregate ratios. This paper implements the multicriteria decision-making techniques (MCDM) for ranking concrete mix factors and representative mix design methods. The study presents a framework to identify critical mix factors found from the concrete mix design methods for high-performance concrete using the two-phase AHP and TOPSIS approach. Three methods of concrete mix design, namely, American Concrete Institute (ACI) mix design method, Department of Energy (DOE) method, and Fineness Modulus (FM) method, are considered for ranking mix design methods and the resulting mix factors. Three hierarchy levels, having three criteria and seven subcriteria, and three alternatives are considered. The present research is attempted to provide MCDM framework to rank the concrete mix guidelines for any given environment such as concrete under sulphate and chloride attack and for evolving the performance-based concrete mix design techniques. Sensitivity and validation analysis is also provided to demonstrate the effectiveness of the proposed approach.


2017 ◽  
pp. 249-258
Author(s):  
Marios Soutsos ◽  
Peter Domone

Sign in / Sign up

Export Citation Format

Share Document