scholarly journals Decision Support Model for Design of High-Performance Concrete Mixtures Using Two-Phase AHP-TOPSIS Approach

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Mohd. Ahmed ◽  
M. N. Qureshi ◽  
Javed Mallick ◽  
Mohd. Abul Hasan ◽  
Mahmoud Hussain

Concrete mix design is the science to obtain concrete proportions of cement, water, and aggregate, based on the particular concrete design method and their mix design parameters. However, the suitability of concrete proportion for high-performance concrete depends on resulting mix factors, namely, water, cement, fine aggregate, and coarse aggregate ratios. This paper implements the multicriteria decision-making techniques (MCDM) for ranking concrete mix factors and representative mix design methods. The study presents a framework to identify critical mix factors found from the concrete mix design methods for high-performance concrete using the two-phase AHP and TOPSIS approach. Three methods of concrete mix design, namely, American Concrete Institute (ACI) mix design method, Department of Energy (DOE) method, and Fineness Modulus (FM) method, are considered for ranking mix design methods and the resulting mix factors. Three hierarchy levels, having three criteria and seven subcriteria, and three alternatives are considered. The present research is attempted to provide MCDM framework to rank the concrete mix guidelines for any given environment such as concrete under sulphate and chloride attack and for evolving the performance-based concrete mix design techniques. Sensitivity and validation analysis is also provided to demonstrate the effectiveness of the proposed approach.

2014 ◽  
Vol 875-877 ◽  
pp. 776-780
Author(s):  
Mojtaba Valinejad Shoubi ◽  
Azin Shakiba Barough ◽  
Iman Kiani

Concrete is the main material used in most of structures in the world. The use of high strength and high performance concrete to overcome deterioration due to static and dynamic load and some environmental burden in different situation such as chloride attack, sulphate attack and etc, is increasing worldwide. Achieving to a concrete with a high quality and saving in amount of material used for producing the concrete need a proper mix design method taken into account. DOE method is considered as an effective and substantial method in implementing the concrete mix design. In this paper, specifications and all mix design calculation steps using DOE method in achieving a high strength and high performance concrete for a tall building in a coastal environment based on three concrete cubes specimens produced in the lab, are investigated. The 7 and 14 day compressive strength test were implemented on the concrete cubes. At the end, it concluded that the specified compressive strength (45 N/mm2) can be achieved on the 28th day based on DOE method.


2014 ◽  
Vol 1035 ◽  
pp. 161-165
Author(s):  
Hai Jun Xing ◽  
Xin Tuo Hou ◽  
Bin Rong Zhu ◽  
Zi Fu Zhang ◽  
Zhen Fu Li

In corrosive soils areasand extremely cold regions,high performance is required inthe impermeability and frost resistanceof concrete poles. In this paper, the mix design of C60 high performance concrete and the relationship between mix parameters and performance is studied and analyzed ,and the influence of the water-cement ratio, the amount of cementation materials, the mineral admixtures and other factors on High Performance Concrete is discussed, as well as the impact of different admixtures for concrete. According to the analysis results, the concrete mix is designed and used in practice.


2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Shoib Bashir Wani ◽  
Tahir Hussain Muntazari ◽  
Nusrat Rafique

The various approaches, established for concrete mix design, are not universal because design mixes are explicit to local climate, available materials, and type of exposure. The new-generation mix design method should be developed based on the performance criteria. The concrete strength obtained from the designed concrete mix and optimum cement content should not be considered as the only parameter for the suitability of the concrete mix. This study was carried to compare the proportioning of concrete mixes obtained by following procedures of Indian Standard (IS), American Concrete Institute (ACI) and British Standard (BS) of concrete mix design without the use of admixtures to validate for use in a moderate climate like Kashmir, India. The concrete mixes have been prepared with the necessary 28 days resistance in compression as “15 MPa, 20 MPa, 25 MPa, 30 MPa and 35 MPa”. The assessment of water-cement (w/c) ratio; cement, water, fine aggregate (FA) and coarse aggregate (CA) proportion was carried. The w/c ratio among all formulated mixes is significantly high in the BS method and low for IS method. The BS method uses less quantity and IS method uses the maximum quantity of cement. In addition, the ratio of total aggregate content (TAC) and the aggregate-cement ratio is higher in BS design method as compared to IS and ACI design methods. The aggregate content in ACI mix design appears to be consistent and it added to the relative high compressive strength. The specimens cast following BS guidelines failed to attain the target mean strength (TMS) due to a higher volume of aggregate content, high w/c proportion, less quantity of cement in the mix. The specimens cast by ACI and IS mix design upon compression testing showed higher results than the calculated TMS. The cost analysis per cubic meter of concrete revealed that IS and ACI mix proportioning are expensive than BS method. The IS procedure results in dense concrete followed by ACI procedure. It is expected that with a comprehensive investigation on selected design parameters concentrating more on local challenges, the present study will floor the way for the development and adoption of performance-based design mix selection for moderate climate.


2014 ◽  
Vol 982 ◽  
pp. 130-135 ◽  
Author(s):  
Pavel Reiterman ◽  
Marcel Jogl ◽  
Vit Baumelt ◽  
Jaroslav Seifrt

Application of HPC (High performance concrete) is very popular and modern solution in current architecture. Higher mechanical and durability properties allow using of thin-walled cross-sections bringing savings of materials and internal space of buildings. This paper deals with development of HPC and UHPFRC (Ultra high performance fiber reinforced concrete) mix design and impact of composition to final mechanical properties. Mix design is focused first on the influence of various additives such as fly ash, silica fume and quartz flour and then to different dosage of steel fibers.


2018 ◽  
Vol 38 ◽  
pp. 03005
Author(s):  
Yi Mei Qiu ◽  
Sen Yuan Wen ◽  
Jun Xiang Chen

Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.


2010 ◽  
Vol 163-167 ◽  
pp. 1414-1418
Author(s):  
Wei Shen ◽  
Fu Hai Li ◽  
Cong Jun Lu

Applying to high performance concrete mix design, overall calculation method can fully quantify the various components of concrete. While the application of overall calculation is very wide, its applicability has weaken with the increase of fly ash. In particular, overall calculation is not applied to high volume fly ash concrete. The reason is simplely considered fly ash cement as a simple alternative to cement when designing of concrete mix, and then following the water-cement ratio strength formula to design concrete mix, neglecting the differences of contribution to concrete strength between fly ash and cement. To solve these problems, this paper considers the fly ash as a separate component of concrete, and re-establishes two variables strength formula based on water-cement ratio and fly ash dosage. On the basis of the generally applicable volume model of concrete, overall calculation is re-derived, then used to directly design high performance concrete mix ratio. Improved overall calculation method is more widely ,more scientific and more reasonable, and will have a far-reaching influence on the application of high volume fly ash high performance concrete.


Sign in / Sign up

Export Citation Format

Share Document