scholarly journals Design of Concrete Mix Proportion Based on Particle Packing Voidage and Test Research on Compressive Strength and Elastic Modulus of Concrete

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 623
Author(s):  
Yun-Hong Cheng ◽  
Bao-Long Zhu ◽  
Si-Hui Yang ◽  
Bai-Qiang Tong

According to the basic principle of dense packing of particles, and considering the interaction between particles, a dense packing model of granular materials in concrete was proposed. During the establishment of this model, binary particle packing tests of crushed stone and sand were carried out. The fitting analysis of the test results determines the relationship between the particle size ratio and the remaining volume fraction of the particle packing, and then the actual void fraction of the particle packing was obtained, based on which the water–binder ratio was combined to determine the amount of various materials in the concrete. The proposed concrete mix design method was used to prepare concrete, and its compressive strength and elastic modulus were tested experimentally. The test results show that the aggregate volume fraction of the prepared concrete increased, and the workability of the concrete mixture with the appropriate amount of water reducing agent meets the design requirements. When the water–binder ratio was 0.42, 0.47, or 0.52, the compressive strength of the concrete increased compared with the control concrete, and the degree of improvement in compressive strength increased with the decrease in water–binder ratio; when the water-binder ratio was 0.42, 0.47, or 0.52, the static elastic modulus of the concrete increased compared with the control concrete, and the degree of improvement in elastic modulus also increased with the decrease in water–binder ratio. The elastic modulus and compressive strength of the prepared concrete have a positive correlation. Findings show that the concrete mix design method proposed by this research is feasible and advanced in a sense.

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Djedjen Achmad ◽  
Desi Supriyan

ABSTRACTHas been researched the impact of mud in aggregate on geopolymer concrete with studies using the cement concrete as a reference. In this study both of concrete are mixed with a variation of mud of 0%, 0.75%, 3% and 5.75% of the combined aggregate weight. Compressive strength of cement concrete is designed with a target of 300 kg / cm2 and geopolymer concrete is made with water binder ratio (w/b) 0.25, Molarity 12 M, the ratio of sodium silicate and sodium hydroxide 1.5. At the age of 3, 7, 14 and 28 day tested of compressive strength, while the spliting test, flexural tensile strength, and modulus of elasticity are tested at 28 days. From the test results, the higher mud content in aggregate , the mechanical properties of the concrete are decreased. Based on testing of compressive strength in cement concrete at 28 days, with a 3% mud content (the content of the reference mud) turns of compressive strength decreased by 77.356%. Of the percentage reduction on the compressive strength of the cement concrete, can be compared to the mud content in geopolymer concrete at 2.04%. Thus the maximum mud on geopolymer concrete aggregate is, for coarse aggregate of 0.68% and a maximum mud content for fine aggregate was 3.4%.Key words : Mud, aggregate, concrete, cement, geopolimer, strengthABSTRAKTelah diteliti dampak kadar lumpur pada agregat untuk beton geopolimer dengan penelitian menggunakan benda uji beton semen sebagai acuan dan beton geopolimer. Dalam penelitian ini ke dua beton tersebut dicampur dengan lumpur gabungan agregat kasar dan agregat halus dengan variasi 0 %, 0.75 %, 3 % dan 5,75 % dari berat agregat gabungan. Beton semen dirancang dengan target kuat tekan 300 kg/cm2 dan beton geopolimer dibuat dengan campuran water binder ratio (w/b) 0.25, Molaritas 12 M, perbandingan sodium silikat dan sodium hidroksida 1.5. Pada umur 3, 7, 14 dan 28 hari dilakukan uji kuat tekan, sedangkan uji kuat tarik belah, uji kuat tarik lentur, dan modulus elastisitas dilakukan pada umur 28 hari. Dari hasil uji terlihat bahwa semakin tinggi kadar lumpur pada agregat, karakteristik mekanis kedua beton tersebut mengalami penurunan. Berdasarkan pengujian kuat tekan pada beton semen umur 28 hari, dengan kadar lumpur 3 % (kadar lumpur referensi) ternyata beton semen mengalami penurunan kuat tekan sebesar 77.356 %. Dari persentase penurunan kuat tekan beton semen tersebut, diplot pada grafik kuat tekan beton geopolimer maka persentase kadar lumpur gabungan yang mengalami penurunan 77.356 % adalah 2.04 %. Dengan demikian kadar lumpur maksimum pada agregat beton geopolimer adalah, untuk agregat kasar sebesar 0.68 % dan kadar lumpur maksimum untuk agregat halus adalah 3.4 %.Kata kunci : Lumpur, agregat, beton, semen, geopolimer, kekuatan


This paper deals with the investigation of concrete containing varying replacement percentages of Alccofine and conjointly Alccofine and different proportions of steel fibers with aspect ratio 50 to investigate mechanical and morphological properties. The replacement levels of Alccofine was chosen as 5% to 15% with 5% increment and steel fibers of 0.5% to1.5% with an increment of 0.5% by volume of concrete. Mix design was done by using British D.O.E method, fixing water binder ratio as 0.45. Results indicated that concrete replaced with Alccofine in addition of steel fibers increased the compressive and flexural strength of concrete. The maximum strength was obtained for the concrete mix containing 15% Alccofine and 1.5% circular crimped steel fibers. Morphological studies indicated the excess C-S-H gel for concrete mixes containing Alccofine as compared to conventional concrete. Hence, it can be culminated that Alccofine and addition of steel fibers increases the strength properties and crack resistant strength of concrete.


Author(s):  
Nanang Budi Setyawan ◽  
Fredy Kurniawan

Development era of globalization has resulted in increasing number of second-hand goods / waste that its existence can be a problem for life in the future. Many things are done in order to recycle paper cement in order to overcome this problem the existence of waste. One way is to use waste paper to be a part of the building. The purpose of this study, to determine the compressive strength and optimum density. Laboratory experimental method uses a variation of 10%, 20%, 30% and testing conducted in the form of compressive strength and density. From the test results obtained by the result of decrease in the compressive strength and density. In addition cellulose concrete mix design with variations determined that 10%, 20%, 30% resulted in a decrease in the compressive strength of concrete,


2018 ◽  
Vol 230 ◽  
pp. 03006 ◽  
Author(s):  
Oleksii Kabus ◽  
Yulyia Kolomiiets ◽  
Viktoriia Lykhohrai

This study presents the test results of 8 concrete series in 5% sulfuric acid solution for 28, 56 and 180 days. Each series was made using two mixtures based on CEM II/A-S 32.5 and CEM III/A 32.5 cements. Modification of the properties of concrete was obtained by the introduction of superplasticizer, silica fume, complex of structure modifier and hydrophobic admixture. The water-binder ratio varied from 0.27 to 0.63, the compressive strength was 26 to 83 MPa, and water absorption from 3.4 to 8.4 %. Samples of test cubes (10x10x10 cm) and test beam (16x4x4 cm) were prepared to immersion in the acid solution. The assessment of corrosion resistance was carried out on the weight loss and strength of concrete in relation to the initial value of 28 days. The obtained results showed that the surface layer of concrete in all samples was destroyed after 28 days of exposure. The deterioration of the corrosion resistance of modified concrete in relation to ordinary concrete without additives was observed regardless of the type of cement. An exception was a series of concrete, which had a water-binder ratio of 0.27–0.28 and a compressive strength of 77–83 MPa.


2016 ◽  
Vol 723 ◽  
pp. 813-818
Author(s):  
I Feng Wang ◽  
Cheng Haw Lee ◽  
Chun Ku Lu

Cement is currently the most versatile and widely used material in construction. However, the high carbon emissions and energy consumption associated with the manufacture of cement remains a serious concern. bagasse ash (BA) is a secondary waste product of bagasse-fired power generation. This study investigated the use of BA as a replacement for cement as a means of reducing the environmental impact of concrete-based construction. At 28 days, we measured the water absorption of cement mortar specimens as well as the compressive strength at room-temperature and after heating. Experiments were conducted involving the replacement of various proportions of cement using BA and fly ash (FA), followed by a comparison of the physical properties. Our test results demonstrate the applicability of BA in the production of cement mortar mixtures with high water-binder ratios. It was found that the water-binder ratio determines the optimal proportion of BA when used as a replacement for cement, wherein a higher water-binder ratio means that more of the cement can be replaced with BA. In compressive strength respect, the optimal cement replacement with BA was 15 % to 25 %, whereas the optimal cement replacement with FA was 20 %. BA was shown to have a more pronounced effect in reducing water absorption in cement mortar specimens with high water-binder ratios (0.55 to 0.65). The compactness of specimens with lower water absorption enables them to retain more of their initial compressive strength following exposure to high temperatures.


2013 ◽  
Vol 712-715 ◽  
pp. 917-920
Author(s):  
Lian Xi Wang ◽  
Guang Hui Pan ◽  
Fu Yong Li ◽  
Hai Ming Wang ◽  
Guo Zhong Li

Construction garbage paving bricks were made of recycled coarse and fine aggregates which were prepared by the waste concrete. The influence of replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage on the compressive strength and flexural strength of construction garbage paving bricks were researched. The experimental results show that optimum replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage were 100%, 0.43 and 1.5% respectively. In this proportion, the 7d, 28d compressive strength of the products were 15.6MPa, 37.5MPa respectively, and the 7d, 28d flexural strength were 2.0MPa, 4.3MPa respectively, which fit the requirements of the Cc30 level of compressive strength and the Cf4.0 level of flexural strength involved in JCT 446-2000 "concrete pavers".


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3148 ◽  
Author(s):  
Hongyan Chu ◽  
Fengjuan Wang ◽  
Liguo Wang ◽  
Taotao Feng ◽  
Danqian Wang

Ultra-high-performance concrete (UHPC) has received increasing attention in recent years due to its remarkable ductility, durability, and mechanical properties. However, the manufacture of UHPC can cause serious environmental issues. This work addresses the feasibility of using aeolian sand to produce UHPC, and the mix design, environmental impact, and mechanical characterization of UHPC are investigated. We designed the mix proportions of the UHPC according to the modified Andreasen and Andersen particle packing model. We studied the workability, microstructure, porosity, mechanical performance, and environmental impact of UHPC with three different water/binder ratios. The following findings were noted: (1) the compressive strength, flexural strength, and Young’s modulus of the designed UHPC samples were in the ranges of 163.9–207.0 MPa, 18.0–32.2 MPa, and 49.3–58.9 GPa, respectively; (2) the compressive strength, flexural strength, and Young’s modulus of the UHPC increased with a decrease in water/binder ratio and an increase in the steel fibre content; (3) the compressive strength–Young’s modulus correlation of the UHPC could be described by an exponential formula; (4) the environmental impact of UHPC can be improved by decreasing its water/binder ratio. These findings suggest that it is possible to use aeolian sand to manufacture UHPC, and this study promotes the application of aeolian sand for this purpose.


2013 ◽  
Vol 724-725 ◽  
pp. 1580-1584
Author(s):  
Ming Ru Zhou ◽  
Zheng Bo Li ◽  
Qiong Fei Shen ◽  
Zhong Yu Guo

Concrete valuation work is mainly on the composition of concrete raw material pricing, different concrete mixture ratio has decisive influence on the valuation. Concrete mix is influenced by many parameters, such as water-binder ratio, sand percentage, unit water and so on. The mixture ratio is the purpose to research the inner relationship between concrete parameters.In the preparation of the consumption of the concrete norm, analysis to the reasonable mix can not only make valuation work accords with the specification requirements, but meet the practice.


2018 ◽  
Vol 8 (8) ◽  
pp. 1217 ◽  
Author(s):  
Hanbing Liu ◽  
Guobao Luo ◽  
Haibin Wei ◽  
Han Yu

Pervious concrete (PC), as an environmental friendly material, can be very important in solving urban problems and mitigating the impact of climate change; i.e., flooding, urban heat island phenomena, and groundwater decline. The objective of this research is to evaluate the strength, permeability, and freeze-thaw durability of PC with different aggregate sizes, porosities, and water-binder ratios. The orthogonal experiment method is employed in the study and nine experiments are conducted. The compressive strength, flexural strength, permeability coefficient, porosity, density, and freeze-thaw durability of PC mixtures are tested. Range analysis and variance analysis are carried out to analyze the collected data and estimate the influence of aggregate size, porosity, and water-binder ratio on PC properties. The results indicate that porosity is the most important factor determining the properties of PC. High porosity results in better permeability, but negatively affects the mechanical strength and freeze-thaw durability. PC of 15% porosity can obtain high compressive strength in excess of 20 MPa and favorable freeze-thaw durability of 80 cycles without sacrificing excessive permeability. Aggregate size also has a significant effect on freeze-thaw durability and mechanical strength. Small aggregate size is advantageous for PC properties. PC with 4.75–9.5 mm coarse aggregate presents excellent freeze-thaw durability. The influence of the water-binder ratio on PC properties is not as significant as that of aggregate size and porosity. An optimal mix ratio is required to trade-off between permeability, mechanical strength, and freeze-thaw durability.


Sign in / Sign up

Export Citation Format

Share Document