scholarly journals Estimation of cumulative energy demand and green house gas emissions of ethanol foamed WMA using life cycle assessment analysis

2015 ◽  
Vol 93 ◽  
pp. 1117-1124 ◽  
Author(s):  
Mohd Rosli Mohd Hasan ◽  
Zhanping You
2015 ◽  
Vol 752-753 ◽  
pp. 715-719
Author(s):  
Young Jin Bok ◽  
Sung Ho Tae ◽  
Taeh Young Kim ◽  
Keun Hyeok Yang

In the present study, a concrete life-cycle assessment system (CLAS) is developed that can easily and quantitatively assess green-house gas emissions during the production of concrete by applying life-cycle assessment techniques. The CLAS is divided into simple and detailed assessment methods; a database (DB) of a standard mix design and energy consumption amount, and basic green-house units applicable to each method, was constructed. A case assessment using the developed system showed that the green-house gas emission determined by the detailed assessment method differed from that by the simple assessment method by approximately 10%. These results show that the proposed method is suitable for estimating green-house gas emissions related to concrete.


2021 ◽  
Vol 13 (12) ◽  
pp. 6894
Author(s):  
Shakira R. Hobbs ◽  
Tyler M. Harris ◽  
William J. Barr ◽  
Amy E. Landis

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 252 ◽  
Author(s):  
Vincenzo Muteri ◽  
Maurizio Cellura ◽  
Domenico Curto ◽  
Vincenzo Franzitta ◽  
Sonia Longo ◽  
...  

The photovoltaic (PV) sector has undergone both major expansion and evolution over the last decades, and currently, the technologies already marketed or still in the laboratory/research phase are numerous and very different. Likewise, in order to assess the energy and environmental impacts of these devices, life cycle assessment (LCA) studies related to these systems are always increasing. The objective of this paper is to summarize and update the current literature of LCA applied to different types of grid-connected PV, as well as to critically analyze the results related to energy and environmental impacts generated during the life cycle of PV technologies, from 1st generation (traditional silicon based) up to the third generation (innovative non-silicon based). Most of the results regarded energy indices like energy payback time, cumulative energy demand, and primary energy demand, while environmental indices were variable based on different scopes and impact assessment methods. Moreover, the review work allowed to highlight and compare key parameters (PV type and system, geographical location, efficiency), methodological insights (functional unit, system boundaries, etc.), and energy/environmental hotspots of 39 LCA studies relating to different PV systems, in order to underline the importance of these aspects, and to provide information and a basis of comparison for future analyses.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 110 ◽  
Author(s):  
Camilla Tua ◽  
Laura Biganzoli ◽  
Mario Grosso ◽  
Lucia Rigamonti

The European packaging market is forecast to grow 1.9% annually in the next years, with an increasing use of returnable packages. In this context, it is important to assess the real environmental effectiveness of the packaging re-use practice in terms of environmental impacts. This life cycle assessment aims to evaluate the environmental performances of reusable plastic crates (RPCs), which are used for the distribution of 36% of fruit and vegetables in Italy. RPCs can be re-used several times after a reconditioning process, i.e., inspection, washing, and sanitization with hot water and chemicals. The analysis was performed considering 12 impact categories, as well as the cumulative energy demand indicator and a tailor-made water consumption indicator. The results show that when the RPCs are used for less than 20 deliveries, the impacts of the life cycle are dominated by the manufacturing stage. By increasing the number of deliveries, the contribution of the reconditioning process increases, reaching 30–70% of the overall impacts for 125 uses. A minimum of three deliveries of the RPCs is required in order to perform better than an alternative system where crates of the same capacity (but 60% lighter) are single-use. The same modeling approach can be used to evaluate the environmental sustainability of other types of returnable packages, in order to have a complete overview for the Italian context and other European countries.


Author(s):  
Mohammad Alizadeh Fard ◽  
Brian D. Barkdoll

Abstract Poor mixing in water storage tanks can cause stagnant zones that could pose negative public health effects. The present study uses Life Cycle Assessment to decide among the only three mixing options available, namely sprinkler, multiple inlets, and a mechanical mixer for the first time. These options were compared using different life cycle assessment (LCA) tools using an 80-year lifetime as the functional unit while assuming that all three options result in acceptable water quality. Using SimaPro modeling software as well as the IPCC 2013 GWP 100a V1.0 and Cumulative Energy Demand methods, these three mixing approaches were compared with and without waste recycling. Results showed that application of a sprinkler is the least expensive option. Damage-cost analyses for categories of human health, ecosystem quality, and resources showed that a sprinkler caused the least damage and cost, while a mixer resulted in the most damage and cost.


RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 18853-18862 ◽  
Author(s):  
Edis Glogic ◽  
Alberto Adán-Más ◽  
Guido Sonnemann ◽  
Maria de Fatima Montemor ◽  
Liliane Guerlou-Demourgues ◽  
...  

An addition of reduced graphene oxide to nickel–cobalt hydroxide electrodes results in net reduction of cumulative energy demand due to improved electrochemical properties.


Sign in / Sign up

Export Citation Format

Share Document