Pull-out behaviour of spiral-shaped steel fibres from normal-strength concrete matrix

2017 ◽  
Vol 139 ◽  
pp. 34-44 ◽  
Author(s):  
Yifei Hao ◽  
Hong Hao
2019 ◽  
Vol 26 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Mehmet Emin Arslan ◽  
Ahmet Durmuş ◽  
Metin Hüsem

AbstractThis paper presents the experimental behavior of plane, non-strengthened and glass fiber reinforced polymer (GFRP) strengthened infilled reinforced concrete (RC) frames with low strength concrete (LSC) and normal strength concrete (NSC) under lateral reversed cyclic loading. For this purpose, eight full-scale, one-bay, one-storey plane and infilled (brick and aerated concrete blocks which are commonly used in RC construction) RC frames with LSC and NSC were produced and in-plane lateral loading tests were carried out. Test results indicate that infill walls considerably change the behavior of frames by increasing rigidity and load carrying capacity. By contrast, GFRP fabric used for strengthening of infilled RC frames improves ductility, load carrying and energy dissipation capacity of infilled frames with LSC and NSC as well. After all the test results were evaluated together, a GFRP strengthened brick infilled frame demonstrated the best performance under cyclic lateral loading.


2002 ◽  
Vol 29 (2) ◽  
pp. 191-200 ◽  
Author(s):  
M Alavi-Fard ◽  
H Marzouk

Structures located in seismic zones require significant ductility. It is necessary to examine the bond slip characteristics of high strength concrete under cyclic loading. The cyclic bond of high strength concrete is investigated under different parameters, including load history, confining reinforcement, bar diameter, concrete strength, and the rate of pull out. The bond strength, cracking, and deformation are highly dependent on the bond slip behavior between the rebar and the concrete under cyclic loading. The results of cyclic testing indicate that an increase in cyclic displacement will lead to more severe bond damage. The slope of the bond stress – displacement curve can describe the influence of the rate of loading on the bond strength in a cyclic test. Specimens with steel confinement sustained a greater number of cycles than the specimens without steel confinement. It has been found that the maximum bond strength increases with an increase in concrete strength. Cyclic loading does not affect the bond strength of high strength concrete as long as the cyclic slip is less than the maximum slip for monotonic loading. The behavior of high strength concrete under a cyclic load is slightly different from that of normal strength concrete.Key words: bond, high strength, cyclic loading, bar spacing, loading rate, failure mechanism.


2013 ◽  
Vol 47 (10) ◽  
pp. 1773-1785 ◽  
Author(s):  
Pierre Rossi ◽  
Jean Philippe Charron ◽  
Maléna Bastien-Masse ◽  
Jean-Louis Tailhan ◽  
Fabrice Le Maou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document