scholarly journals Radiological evaluation of by-products used in construction and alternative applications; Part I. Preparation of a natural radioactivity database

2017 ◽  
Vol 150 ◽  
pp. 227-237 ◽  
Author(s):  
Z. Sas ◽  
R. Doherty ◽  
T. Kovacs ◽  
M. Soutsos ◽  
W. Sha ◽  
...  
2021 ◽  
Vol 71 (344) ◽  
pp. e259
Author(s):  
F. Puertas ◽  
J. A. Suárez-Navarro ◽  
M. M. Alonso ◽  
C. Gascó

The use of industrial waste and/or by-products as alternative sources of raw materials in building materials has become standard practice. The result, more sustainable construction, is contributing to the institution of a circular economy. Nonetheless, all necessary precautions must be taken to ensure that the inclusion and use of such materials entail no new health hazard for people or their environment. Due to the processes involved in generating industrial waste/by-products, these alternative or secondary materials may be contaminated with heavy metals, other undesirable chemicals or high levels of natural radioactivity that may constrain their use. In-depth and realistic research on such industrial waste is consequently requisite to its deployment in building materials. This paper reviews the basic concepts associated with radioactivity and natural radioactivity, focusing on industrial waste/by-products comprising Naturally Occurring Radioactive Materials (NORM) used in cement and concrete manufacture. Updated radiological data are furnished on such waste (including plant fly ash, iron and steel mill slag, bauxite and phosphogypsum waste) and on other materials such as limestone, gypsum and so on. The paper also presents recent findings on radionuclide activity concentrations in Portland cements and concretes not bearing NORMs. The role of natural aggregate in end concrete radiological behaviour is broached. The radiological behaviour of alternative non-portland cements and concretes, such as alkali-activated materials and geopolymers, is also addressed.


1999 ◽  
Vol 51 (1) ◽  
pp. 93-96 ◽  
Author(s):  
Viresh Kumar ◽  
T.V. Ramachandran ◽  
Rajendra Prasad

1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Sumio Iijima

We have developed a technique to prepare thin single crystal films of graphite for use as supporting films for high resolution electron microscopy. As we showed elsewhere (1), these films are completely noiseless and therefore can be used in the observation of phase objects by CTEM, such as single atoms or molecules as a means for overcoming the difficulties because of the background noise which appears with amorphous carbon supporting films, even though they are prepared so as to be less than 20Å thick. Since the graphite films are thinned by reaction with WO3 crystals under electron beam irradiation in the microscope, some small crystallites of WC or WC2 are inevitably left on the films as by-products. These particles are usually found to be over 10-20Å diameter but very fine particles are also formed on the film and these can serve as good test objects for studying the image formation of phase objects.


Sign in / Sign up

Export Citation Format

Share Document