Study on the effect of chloride ion on the early age hydration process of concrete by a non-contact monitoring method

2018 ◽  
Vol 172 ◽  
pp. 499-508 ◽  
Author(s):  
Youyuan Lu ◽  
Guiyun Shi ◽  
Yuqing Liu ◽  
Zhu Ding ◽  
Jinlong Pan ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Haibin Yin ◽  
Jianping Zhu ◽  
Xuemao Guan ◽  
Zhengpeng Yang ◽  
Yu Zhu ◽  
...  

As a new two-dimensional material, MXene (nano-Ti3C2) has been widely applied in many fields, especially for reinforced composite materials. In this paper, mechanical testing, X-ray diffraction (XRD), hydration heat, scanning electron microscope (SEM), and EDS analysis were used to analyze the impact of MXene on cement hydration properties. The obtained results revealed that (a) MXene could greatly improve the early compressive strength of cement paste with 0.04 wt% concentration, (b) the phase type of early-age hydration products has not been changed after the addition of MXene, (c) hydration exothermic rate within 72 h has small difference at different amount of MXene, and (d) morphologies of hydration products were varied with the dosage of MXene, a lot of tufted ettringites appeared in 3 d hydration products when the content of MXene was 0.04 wt%, which will have a positive effect on improving the early mechanical properties of cement paste. MXene has inhibited the Portland cement hydration process; the main role of MXene in the cement hydration process is to promote the messy ettringite becoming regular distribution at a node and form network connection structure in the crystals growth process, making the mechanics performance of cement paste significantly improved.


2021 ◽  
Vol 285 ◽  
pp. 122949
Author(s):  
Da-heng Wang ◽  
Xiao Yao ◽  
Tao Yang ◽  
Wen-rui Xiang ◽  
Ying-tao Feng ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985194 ◽  
Author(s):  
Jianping Zhu ◽  
Genshen Li ◽  
Ruijie Xia ◽  
Huanhuan Hou ◽  
Haibin Yin ◽  
...  

Nanomaterial, as a new emerging material in the field of civil engineering, has been widely utilized to enhance the mechanical properties of cementitious material. Nano-SnO2 has presented high hardness characteristics, but there is little study of the application of nano-SnO2 in the cementitious materials. This study mainly investigated the hydration characteristics and strength development of Portland cement paste incorporating nano-SnO2 powders with 0%, 0.08%, and 0.20% dosage. It was found that the early-age compressive strength of cement paste could be greatly improved when nano-SnO2 was incorporated with 0.08% dosage. The hydration process and microstructure were then measured by hydraulic test machine, calorimeter, nanoindentation, X-ray diffraction, scanning electron microscope, and mercury intrusion porosimetry. It was found that the cement hydration process was promoted by the addition of nano-SnO2, and the total amount of heat released from cement hydration is also increased. In addition, the addition of nano-SnO2 can promote the generations of high density C-S-H and reduce the generations of low density C-S-H indicating the nucleation effect of nano-SnO2 in the crystal growth process. The porosity and probable pore diameter of cement paste with 0.08% nano-SnO2 were decreased, and the scanning electron microscopic results also show that the cement paste with 0.08% nano-SnO2 promotes the densification of cement microstructure, which are consistent with the strength performance.


Sign in / Sign up

Export Citation Format

Share Document