scholarly journals Mesoscale experimental investigation of thermomechanical behaviour of the carbon textile reinforced refractory concrete under simultaneous mechanical loading and elevated temperature

2019 ◽  
Vol 217 ◽  
pp. 156-171 ◽  
Author(s):  
Manh Tien Tran ◽  
Xuan Hong Vu ◽  
Emmanuel Ferrier
1978 ◽  
Vol 7 (4) ◽  
pp. 235-239 ◽  
Author(s):  
D. H. van Campen ◽  
H. W. Croon ◽  
J. Lindwer

A combined theoretical and experimental investigation is reported with respect to the influence of mechanical loading on loosening at the cement bone interface of knee prostheses with intermedullary stems. The in vitro experiments have been performed under cyclic loading conditions with the tibial part of a Shiers knee prosthesis implanted in fresh cadaver tibiae. The experimental results indicate an unfavourable effect of peak loading (as occurring in walking up stairs) on loosening as compared with loading due to normal walking conditions.


2015 ◽  
Vol 1115 ◽  
pp. 199-202
Author(s):  
Mujibur M. Rahman ◽  
A.A.A. Talib

This paper presents the outcomes of an experimental investigation on the effect of sintering schedule to the alloyability of FeCrAl powder mix formed through warm powder compaction process. A lab-scale uni-axial die compaction rig was designed and fabricated which enabled the compaction of powder mass at elevated temperature. Iron (Fe) powder ASC 100.29 was mechanically mixed with other alloying elements, namely chromium (Cr), and aluminum (Al) for 60 minutes and compacted at 150°C by applying 130 kN axial loading to generate green compacts. The defect-free green compacts were subsequently sintered in an argon gas fired furnace for different holding times. The sintered samples were then undergone XRD analysis. The results revealed that the alloyability of sintered products were affected by the holding time during sintering. The sample sintered at 800°C for 60 minutes showed the highest intensity of FeCrAl alloy.


Sign in / Sign up

Export Citation Format

Share Document