The mechanical evaluation of cold asphalt emulsion mixtures using a new cementitious material comprising ground-granulated blast-furnace slag and a calcium carbide residue

2020 ◽  
Vol 250 ◽  
pp. 118808 ◽  
Author(s):  
Anmar Dulaimi ◽  
Hayder Kamil Shanbara ◽  
Ali Al-Rifaie
Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3511 ◽  
Author(s):  
Joonho Seo ◽  
Solmoi Park ◽  
Hyun No Yoon ◽  
Jeong Gook Jang ◽  
Seon Hyeok Kim ◽  
...  

The solidification and stabilization of calcium carbide residue (CCR) using granulated blast furnace slag was investigated in this study. CCR binding in hydrated slag was explored by X-ray diffraction, 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and thermodynamic calculations. Mercury intrusion porosimetry and and compressive strength tests assessed the microstructure and mechanical properties of the mixtures of slag and CCR. C-A-S-H gel, ettringite, hemicarbonate, and hydrotalcite were identified as the main phases in the mixture of slag and CCR. The maximum CCR uptake by slag and the highest volume of precipitated solid phases were reached when CCR loading in slag is 7.5% by mass of slag, according to the thermodynamic prediction. This feature is also experimentally observed in the microstructure, which showed an increase in the pore volume at higher CCR loading.


Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1287
Author(s):  
Marek Kovac ◽  
Alena Sicakova ◽  
Matej Spak

The article deals with cement supplementary materials based on ground granulated blast furnace slag and zeolite. Purpose of the experiment was to observe dependences (if they exist) between selected parameters (modulus of basicity, modulus of hydraulicity and initial setting time) and activity indexes, for easier and quicker way to determine or predict the activity index. Testing showed that moderate dependences between those parameters and activity indexes were observed. Results showed that prediction of activity indexes based on chemical composition is feasible.


2020 ◽  
Vol 3 (4) ◽  
pp. 1133-1139
Author(s):  
S. Karthiga ◽  
C. H. Renuka Devi ◽  
N. G. Ramasamy ◽  
C. Pavithra ◽  
J. S. Sudarsan ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Naraindas Bheel ◽  
Suhail Ahmed Abbasi ◽  
Paul Awoyera ◽  
Oladimeji B. Olalusi ◽  
Samiullah Sohu ◽  
...  

The growing demand for cement has created a significant impact on the environment. Cement production requires huge energy consumptions; however, Pakistan is currently facing a severe energy crisis. Researchers are therefore engaged with the introduction of agricultural/industrial waste materials with cementitious properties to reduce not only cement production but also energy consumption, as well as helping protect the environment. This research aims to investigate the influence of binary cementitious material (BCM) on fresh and hardened concrete mixes prepared with metakaolin (MK) and ground granulated blast furnace slag (GGBFS) as a partial replacement of cement. The replacement proportions of BCM used were 0%, 5%, 10%, 15%, and 20% by weight of cement. A total of five mixes were prepared with 1 : 1.5 : 3 mix proportion at 0.54 water-cement ratios. A total of 255 concrete specimens were prepared to investigate the compressive, tensile, and flexural strength of concrete after 7, 28, and 56 days, respectively. It was perceived that the workability of concrete mixes decreased with an increasing percentage of MK and GGBFS. Also, the density and permeability of concrete decreased with an increasing quantity of BCM after 28 days. Conversely, the compressive, tensile, and flexural strength of concrete were enhanced by 12.28%, 9.33%, and 9.93%, respectively, at 10% of BCM after 28 days. The carbonation depth reduced with a rise in content of BCM (up to 10%) and then later improved after 28, 90, and 180 days. Moreover, the effect of chloride attack in concrete is reduced with the inclusion of BCM after 28 and 90 days. Similarly, the drying shrinkage of concrete decreased with an increase in the content of BCM after 40 days.


Sign in / Sign up

Export Citation Format

Share Document