Efficiency of incorporating Algerian ground granulated blast furnace slag as a supplementary cementitious material: a review

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohammed Siline
Proceedings ◽  
2018 ◽  
Vol 2 (20) ◽  
pp. 1287
Author(s):  
Marek Kovac ◽  
Alena Sicakova ◽  
Matej Spak

The article deals with cement supplementary materials based on ground granulated blast furnace slag and zeolite. Purpose of the experiment was to observe dependences (if they exist) between selected parameters (modulus of basicity, modulus of hydraulicity and initial setting time) and activity indexes, for easier and quicker way to determine or predict the activity index. Testing showed that moderate dependences between those parameters and activity indexes were observed. Results showed that prediction of activity indexes based on chemical composition is feasible.


2003 ◽  
Vol 30 (2) ◽  
pp. 414-428 ◽  
Author(s):  
Mladenka Saric-Coric ◽  
Pierre-Claude Aïtcin

For each tonne of cement used, the cement industry emits an average of 0.9 t of CO2, which contributes to the greenhouse effect. To satisfy the demands of the concrete industry for cementing materials, new environmental requirements, and the implementation of a sustainable development policy, the use of supplementary cementitious material as a replacement of part of the Portland cement has proven to be an interesting avenue that has not yet been fully explored. Granulated blast-furnace slag has been and is being used as a supplementary cementitious material in replacement of cement in many countries. In Canada, its proportion is usually limited to 20-25% of cement replacement owing to a significant decrease in early age compressive strength as well as a lower scaling resistance. In this study, we have tried to show that by reducing the water:cement ratio we can increase cement replacement by slag up to 50% without harming its short-term compressive strength and scaling resistance. The concretes that were prepared had a workability comparable to that of the reference concrete without slag, sufficient compressive strength to allow demoulding after 24 h, very low chloride ion permeability even at 28 d, as well as very good freeze-thaw and scaling resistance, as long as it is water-cured for a slightly longer period.Key words: high-performance concrete, blast-furnace slag, sustainable development, superplasticizers, workability, durability, silica fume.


2020 ◽  
Vol 262 ◽  
pp. 120102 ◽  
Author(s):  
Paulo R. de Matos ◽  
Jade C.P. Oliveira ◽  
Taísa M. Medina ◽  
Diego C. Magalhães ◽  
Philippe J.P. Gleize ◽  
...  

2021 ◽  
Vol 1973 (1) ◽  
pp. 012136
Author(s):  
Hussein Abd Alrutha Hanash ◽  
Maan S. Hassan ◽  
Ayat M. Hussein

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Naraindas Bheel ◽  
Suhail Ahmed Abbasi ◽  
Paul Awoyera ◽  
Oladimeji B. Olalusi ◽  
Samiullah Sohu ◽  
...  

The growing demand for cement has created a significant impact on the environment. Cement production requires huge energy consumptions; however, Pakistan is currently facing a severe energy crisis. Researchers are therefore engaged with the introduction of agricultural/industrial waste materials with cementitious properties to reduce not only cement production but also energy consumption, as well as helping protect the environment. This research aims to investigate the influence of binary cementitious material (BCM) on fresh and hardened concrete mixes prepared with metakaolin (MK) and ground granulated blast furnace slag (GGBFS) as a partial replacement of cement. The replacement proportions of BCM used were 0%, 5%, 10%, 15%, and 20% by weight of cement. A total of five mixes were prepared with 1 : 1.5 : 3 mix proportion at 0.54 water-cement ratios. A total of 255 concrete specimens were prepared to investigate the compressive, tensile, and flexural strength of concrete after 7, 28, and 56 days, respectively. It was perceived that the workability of concrete mixes decreased with an increasing percentage of MK and GGBFS. Also, the density and permeability of concrete decreased with an increasing quantity of BCM after 28 days. Conversely, the compressive, tensile, and flexural strength of concrete were enhanced by 12.28%, 9.33%, and 9.93%, respectively, at 10% of BCM after 28 days. The carbonation depth reduced with a rise in content of BCM (up to 10%) and then later improved after 28, 90, and 180 days. Moreover, the effect of chloride attack in concrete is reduced with the inclusion of BCM after 28 and 90 days. Similarly, the drying shrinkage of concrete decreased with an increase in the content of BCM after 40 days.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Sign in / Sign up

Export Citation Format

Share Document