scholarly journals Utilization of Calcium Carbide Residue Using Granulated Blast Furnace Slag

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3511 ◽  
Author(s):  
Joonho Seo ◽  
Solmoi Park ◽  
Hyun No Yoon ◽  
Jeong Gook Jang ◽  
Seon Hyeok Kim ◽  
...  

The solidification and stabilization of calcium carbide residue (CCR) using granulated blast furnace slag was investigated in this study. CCR binding in hydrated slag was explored by X-ray diffraction, 29Si and 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, and thermodynamic calculations. Mercury intrusion porosimetry and and compressive strength tests assessed the microstructure and mechanical properties of the mixtures of slag and CCR. C-A-S-H gel, ettringite, hemicarbonate, and hydrotalcite were identified as the main phases in the mixture of slag and CCR. The maximum CCR uptake by slag and the highest volume of precipitated solid phases were reached when CCR loading in slag is 7.5% by mass of slag, according to the thermodynamic prediction. This feature is also experimentally observed in the microstructure, which showed an increase in the pore volume at higher CCR loading.

2003 ◽  
Vol 18 (11) ◽  
pp. 2571-2579 ◽  
Author(s):  
I. Lecomte ◽  
M. Liégeois ◽  
A. Rulmont ◽  
R. Cloots ◽  
F. Maseri

Alkali activation of dehydroxylated kaolin or clay yielded high-strength polymeric materials, so-called geopolymers. They were synthesized by mixing the aluminosilicate with solutions of sodium metasilicate and KOH followed by adding 45 wt.% of ground-granulated blast furnace slag. The influence of the aluminosilicate source, its activation temperature, and the order of mixing raw materials were studied on the workability of the blending paste, the microstructure, and the Vickers hardness of the geopolymer samples. The polymeric material is completely amorphous according to x-ray diffraction. Solid-state 27Al and 29Si magic-angle-spinning nuclear magnetic resonance showed that the geopolymer consists of AlO4 and SiO4 tetrahedra linked together through a polymeric network constituted by branched entities SiQ4(4Al) and SiQ4(3Al), but also by less-polymerized silicates SiQ1 and SiQ2. Scanning electron microscopy showed a homogeneous polymeric gel matrix containing unreacted slag (and quartz) grains; thermogravimetric analysis and differential scanning calorimetry exhibited a high content of water and an elevated melting point (1260°C). Vickers hardness values are in the range of 200 MPa.


2021 ◽  
Vol 25 (8) ◽  
pp. 110-120
Author(s):  
M. Sivasakthi ◽  
R. Jeyalakshmi ◽  
N.P. Rajamane ◽  
J. Baskarasundararaj

The present study investigated the physicochemical and thermal properties of fly ash and ground granulated blast furnace slag (GGBS) based geopolymer mortars exposed to elevated temperatures under different reaction conditions. The compressive strength results shows that fly ash based geopolymer mortar exhibits retention of compressive strength up to 800⁰C whereas the addition of GGBS increases the ambient temperature compressive strength, however, thereafter the retention of strength is observed as 66% at 400˚C and 30% at 800˚C. Fourier transform infra-red spectroscopy (FT- IR) and 29Si and 27Al Magic angle spinning nuclear magnetic resonance (MAS-NMR) spectrum confirmed the alumino-silicate network structure of the geopolymer. Thermogravimetry with differential thermal analysis (TGA/DTA) showed that most of the % weight loss occurred in the temperature range between 30-250ºC due to the water loss after that it was stabilized till 1000⁰C. Thermal conductivity has the direct relationship with the temperature whereas it is vice versa for the % linear thermal expansion. The Scanning electron microscopy (SEM) analysis was performed to identify the morphology changes before and after thermal exposure.


2011 ◽  
Vol 250-253 ◽  
pp. 870-874
Author(s):  
Hong Mei Ai ◽  
Jing Wei ◽  
Jun Ying Bai ◽  
Pu Guang Lu

Eco-cement produced from waste concrete was proved to be feasible in early research. The seed crystal of ground granulated blast furnace slag (GGBS) was utilized in this research to lower the sintering temperature of eco-cement clinker. The mineral compositions of clinker with GGBS seed crystal was analyzed by X-ray diffraction (XRD), and the mechanical properties of eco-cement with GGBS seed crystal was also tested. Four main cement minerals were all observed in eco-cement clinker and the compressive strength of the eco-cement pastes can approach to about 66 MPa at 28 curing days. The results showed that GGBS seed crystal was favourable for the formation of cement minerals at a lower temperature. It can help reduce by about 50~100°C for the sintering process of cement clinker. Content of GGBS seed crystal should better be in the rage of 5%~8%, and the suitable sintering temperature should be 1350°C.


2014 ◽  
Vol 633 ◽  
pp. 240-244 ◽  
Author(s):  
Su Ping Cui ◽  
Ling Ling Liu ◽  
Jing Chen ◽  
Ya Li Wang ◽  
Jian Feng Wang ◽  
...  

Granulated blast furnace slag (GBFS) is a by-product of manufacturing iron. Samples of GBFS with different ratio of SiO2/Al2O3 were prepared by simulating the actual process of GBFS in laboratory. This study investigated the influence of SiO2/Al2O3 content on structure and hydration activity of GBFS which were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), infrared radiation (IR) and mechanical testing. It is found that the vitreous content of each sample is above 97% and the hydration activity indexes of 7d and 28d of samples significantly decrease with the increase of SiO2/Al2O3 ratio. The IR characteristic absorption spectrum shows that the silicates mainly exist in [SiO4]-tetrahedra and the aluminum atoms are in different coordination states and the bonding strengths rise with the increase of SiO2/Al2O3 ratio.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. V. Hanna ◽  
L. P. Aldridge ◽  
E. R. Vance

ABSTRACTSolid-state 133Cs magic angle spinning nuclear magnetic resonance (MAS NMR) measurements have been used to investigate Cs speciation in cements designed for immobilizing low-level nuclear wastes. Cs in ordinary Portland cement cured for only 10 days at room temperature appears to only inhabit aqueous solutions, as evidenced by a sharp signal with no sidebands, whether or not substantial quantities of blast furnace slag or silica fume are present. No significant 133Cs spectral differences were observed when slag or silica fume were present for curing periods of 10 days, but differences due to Cs partly inhabiting crystalline sites instead of water solutions were observed after 12 months in the slag-containing cement. Pre- incorporation of Cs in various zeolites, followed by mixing the zeolites into the cement, leads to enhanced Cs retention in the cement when it is subject to water leaching at 25°C.


2020 ◽  
Vol 3 (4) ◽  
pp. 1133-1139
Author(s):  
S. Karthiga ◽  
C. H. Renuka Devi ◽  
N. G. Ramasamy ◽  
C. Pavithra ◽  
J. S. Sudarsan ◽  
...  

1994 ◽  
Vol 9 (1) ◽  
pp. 188-197 ◽  
Author(s):  
Paul J. Schilling ◽  
Amitava Roy ◽  
H.C. Eaton ◽  
Philip G. Malone ◽  
Newell W. Brabston

Ground granulated blast-furnace slag was reacted in 5 M (pH 14.7) and 1.5 M (pH 14.2) NaOH solutions at a water/slag ratio of ∼0.4, and characterized by unconfined compressive strength testing, scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction. The reacted material consisted of a dense layered matrix interspersed with unreacted glass particles and regions of reaction products with higher porosity. CSH(I) and (C, M)4AH13 were identified by x-ray diffraction. The C-S-H (calcium silicate hydrate) phase is proposed to consist mainly of structurally imperfect layers of tobermorite, interleaved with layers of (C, M)4AH13. Other cations, most significantly Na+, are incorporated into the structure. Use of the highly concentrated solution (5 M) produced a higher degree of reaction and, consequently, higher compressive strength (38 MPa after 28 days for 5 M solution vs 21 MPa for 1.5 M).


Sign in / Sign up

Export Citation Format

Share Document