Enhancement of triisopropanolamine on the compressive strength development of cement paste incorporated with high content of wasted clay brick powder and its working mechanism

2021 ◽  
Vol 302 ◽  
pp. 124052
Author(s):  
Ting Zhang ◽  
Zhenping Sun ◽  
Haijing Yang ◽  
Yanliang Ji ◽  
Zhuhua Yan
2021 ◽  
Vol 15 (1) ◽  
pp. 370-380
Author(s):  
David Sinkhonde ◽  
Richard Ocharo Onchiri ◽  
Walter Odhiambo Oyawa ◽  
John Nyiro Mwero

Background: Investigations on the use of waste clay brick powder in concrete have been extensively conducted, but the analysis of waste clay brick powder effects on cement paste is limited. Materials and Methods: This paper discusses the effects of waste clay brick powder on cement paste. Fragmented clay bricks were grounded in the laboratory using a ball mill and incorporated into cementitious mixes as partial replacement of Ordinary Portland Cement. Workability, consistency, setting time, density and compressive strength properties of paste mixes were investigated to better understand the impact of waste clay brick powder on the cementitious paste. Four cement replacement levels of 2.5%, 5%, 7.5% and 10% were evaluated in comparison with the control paste. The chemical and mineral compositions were evaluated using X-Ray Fluorescence and X-Ray Diffractometer, respectively. The morphology of cement and waste clay brick powder was examined using a scanning electron microscope. Results: The investigation of workability exhibited a reduction of slump attributed to the significant addition of waste clay brick powder into the cementitious mixes, and it was concluded that waste clay brick powder did not significantly influence the density of the mixes. In comparison with the control paste, increased values of consistency and setting time of cement paste containing waste clay brick powder confirmed the information available in the literature. Conclusion: Although waste clay brick powder decreased the compressive strength of cement paste, 5% partial cement replacement with waste clay brick powder was established as an optimum percentage for specimens containing waste clay brick powder following curing periods of 7 and 28 days. Findings of chemical composition, mineral composition and scanning electron microscopy of waste clay brick powder demonstrated that when finely ground, fragmented clay bricks can be used in concrete as a pozzolanic material.


2019 ◽  
Vol 19 (2) ◽  
pp. 7-20
Author(s):  
Patrícia Guillante ◽  
Aguida Gomes de Abreu ◽  
Marlova Piva Kulakowski ◽  
Maurício Mancio ◽  
Claudio de Souza Kazmierczak

Abstract Pozzolans rich in silica, such as Rice Husk Ash (RHA), contribute to compressive strength gain but at the same time might increase alkali-aggregate reaction (AAR) in mortar mixtures. Pozzolans that have aluminates, such as Fired Clay Brick Waste (FCW), can be efficient to mitigate AAR but tend to lead to a slower compressive strength development. The association of different types of pozzolans, however, may result in a synergistic effect, compensating individual deficiencies. This paper presents a study of mixtures containing RHA, FCW and these two materials combined, aiming to obtain benefits in the mechanical behavior and in the durability regarding AAR. A substitution rate of 20% Portland cement by pozzolanic material was used. Through accelerated AAR tests and compressive strength measurements, it was found that while RHA is considered harmful to AAR - even when using an innocuous aggregate - FCW presents benefits, also avoiding this deleterious effect when combined with RHA. The same occurs in the compressive strength development, where RHA compensates a small loss of compressive strength associated with the use of FWC alone.


2014 ◽  
Vol 919-921 ◽  
pp. 1780-1789 ◽  
Author(s):  
Yu Hai Deng ◽  
Chang Qing Zhang ◽  
Hai Qiang Shao ◽  
Han Wu ◽  
Nie Qiang Xie

Lithium-based chemicals are known to their signal effect on restraining alkali-silica reaction but uncertain influence on workability and mechanical property in the concrete. The aim of this research is to analyze the effects of three lithium additiveslithium nitrate (LiNO3), lithium hydroxide (LiOH) and lithium carbonate (Li2CO3) at various dosages, with an extensive comparison on fluidities, setting times and compressive strength of cement pastes. The experimental study shows that test results vary with the type of admixture. In general, three conclusions can be made: 1) lithium nitrate and lithium hydroxide can enhance the fluidity of cement paste, but lithium carbonate has opposite effects; 2) all three lithium salts shorten setting time as well as decrease the strength at suitable dosages; 3) the variations in lithium additives dosages have different influence on the cement pastes setting time and compressive strength development.


2020 ◽  
Vol 1 ◽  
Author(s):  
Mohammed A. Hefni

Abstract The use of natural pozzolans in concrete applications is gaining more attention because of the associated environmental, economic, and technical benefits. In this study, reference cemented mine backfill samples were prepared using Portland cement, and experimental samples were prepared by partially replacing Portland cement with 10 or 20 wt.% fly ash as a byproduct (artificial) pozzolan or pumice as a natural pozzolan. Samples were cured for 7, 14, and 28 days to investigate uniaxial compressive strength development. Backfill samples containing 10 wt.% pumice had almost a similar compressive strength as reference samples. There is strong potential for pumice to be used in cemented backfill to minimize costs, improve backfill properties, and promote the sustainability of the mining industry.


Sign in / Sign up

Export Citation Format

Share Document