Experimental study on bond behavior between high-strength grout and deformed steel bars

2021 ◽  
Vol 301 ◽  
pp. 124059
Author(s):  
Huang Yuan ◽  
Han Bing
2014 ◽  
Vol 548-549 ◽  
pp. 663-667 ◽  
Author(s):  
Hong Wei Lin ◽  
Yu Xi Zhao

Studying the bond stress-slip relationship between concrete and corroded steel bar by cutting the steel bars into two separate parts and attaching electric strain gauges in the slots is no longer suitable. To overcome the disadvantages of electric strain gauges in the measuring the stress of corroded steel bars, this paper introduced a new kind of FBG sensor measuring steel stress. By calibration tests, the proportion coefficient between variation of wavelength and steel strain was confirmed as 0.0012. The bond behavior between concrete and steel bar was also investigated by performing pullout tests on beam end specimens.


2016 ◽  
Vol 711 ◽  
pp. 673-680 ◽  
Author(s):  
Zhiwen Ye ◽  
Wei Ping Zhang ◽  
You Hu ◽  
Xiang Lin Gu

This paper presents an experimental investigation on the influence of fatigue loading history on bond behavior between steel bars and concrete. Reinforced concrete specimens were subjected to fatigue loadings with different amplitudes and cycles before undergoing eccentric pull-out tests. Tests revealed that all specimens failed with the splitting of the concrete cover. With increased loading cycles, the concrete in front of transverse ribs usually becomes denser at the beginning. Meanwhile, the initial bond stiffness and the bond strength increased, while the slip corresponding to the peak bond stress decreases. With the further increase of loading cycles, the bond strength begins to decrease after it reaches a critical value. This study determined that for specimens subjected to repeated loading with a larger amplitude, fewer cycles are needed for the bond strength to go up to the critical bond strength.


Sign in / Sign up

Export Citation Format

Share Document