Green ultra-high performance concrete with very low cement content

2021 ◽  
Vol 303 ◽  
pp. 124482
Author(s):  
Ye Shi ◽  
Guangcheng Long ◽  
Xiaohui Zeng ◽  
Youjun Xie ◽  
Huihui Wang
2021 ◽  
Vol 920 (1) ◽  
pp. 012005
Author(s):  
M Z A M Zahid ◽  
B H A Bakar ◽  
F M Nazri ◽  
H Alasmari ◽  
M F P M Latiff ◽  
...  

Abstract This current study attempts to investigate the mechanical, durability as well as rheology properties of Ultra-High Performance Concrete (UHPC) with low cement content and using coarse aggregate. The cement content used in UHPC mix in current study was 800 kg/m3. The slump flow, compressive strength, splitting tensile strength, modulus of elasticity, water absorption and water penetration tests were conducted to determine the workability, mechanical and durability properties of explored UHPC mixture. The test results show that the above properties were exceptional and comparable with other UHPC mixtures.


2021 ◽  
Vol 65 (2) ◽  
pp. 81-105
Author(s):  
Ingrid Lande ◽  
Rein Terje Thorstensen

Abstract This paper presents an investigation on substituting the cement content with an inert material, in a typical locally produced UHPC mix. A structured literature review was performed to enrichen the discussion and to benchmark the results towards already reported investigations in the research society. Investigations on cement substitution in UHPC are frequently reported. However, usually the cement is substituted with other binding materials – often pozzolanic by-products from other industries. Reports from investigations on the use of inert materials for cement substitution in UHPC seem scarce. An experimental program that included a total of 210 test specimens was executed. This program included evaluating several questions embedded to the problem on how to substitute cement while keeping all other variables constant. It is concluded that up to 40% of the cement can be substituted with an inert material, without significantly changing the flexural tensile strength or compressive strength of the hardened UHPC. Two preconditions were caretaken: the particle packing was maintained by securing that the substitution material had a Particle Size Distribution (PSD) near identical to the cement and that the water balance was maintained through preconditioning of the substitution material. Suggestions are made for improving benchmarking.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document