Mechanical performance of sustainable asphalt mixtures manufactured with copper slag and high percentages of reclaimed asphalt pavement

2021 ◽  
Vol 304 ◽  
pp. 124653
Author(s):  
Osvaldo Muñoz-Cáceres ◽  
Aitor C. Raposeiras ◽  
Diana Movilla-Quesada ◽  
Daniel Castro-Fresno ◽  
Manuel Lagos-Varas ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4137
Author(s):  
Quan Liu ◽  
Markus Oeser

The homogeneity of asphalt mixtures blended with reclaimed asphalt pavement (RAP) is affected by many factors. Due to the complicated compositions of recycled asphalt mixtures, the inhomogeneity issue might cause insufficient mechanical properties of asphalt mixtures, even though a design method was appropriately adopted. Therefore, it is of great significance to study the influence of mixing conditions on the homogeneity of asphalt mixtures blended with RAP materials. This study focused on the macro-scale homogeneity of produced asphalt mixtures. Specifically, asphalt mixtures incorporated with 40% RAP content were produced in a laboratory using different mixing times and mixing temperatures. A multi-direction indirect tensile stiffness modulus (ITSM) test was proposed to quantify the homogeneity of produced samples. In addition, the digital image processing (DIP) method was used to identify the distribution of aggregates and RAP binder. The results indicated that the influence of mixing time on the macro-homogeneity of asphalt mixtures indicated that a longer mixing time was favorable for the material dispersion. The influence of mixing temperature mainly rested on two perspectives. One was that the temperature variation induced the change of binder viscosity. The other was that the temperature influences the diffusion process between RAP binder and new bitumen, which further affected the mechanical performance of produced asphalt mixtures.


Author(s):  
Ki Hoon Moon ◽  
Augusto Cannone Falchetto ◽  
Di Wang ◽  
Yun Su Kim

Using reclaimed asphalt material for rehabilitation and construction of new asphalt pavements is currently a common practice not only in view of the economic benefits associated with this process but also because of the reduced exploitation of natural resources. For this reason, road authorities have implemented recommendations and guidelines to regulate the use of reclaimed asphalt pavement (RAP) and other recycled materials such as industrial by-products. Nevertheless, the combined use of different recycled materials is not commonly addressed. In this paper, the effect of adding RAP and taconite (a mining by-product) on fatigue and low temperature properties of asphalt mixture was investigated with two different testing geometries: indirect tensile (IDT) and semi-circular bending (SCB). Fatigue behavior, creep stiffness, relaxation modulus, low temperature fracture energy, and fracture toughness were also evaluated, computed, and then compared. A more brittle behavior was observed for mixture prepared with RAP material, however, the mechanical performance was not significantly different for mixtures containing 20% RAP alone and in combination with 50% taconite compared with conventional asphalt mixtures designed with virgin material. This was not the case when RAP content was increased up to 50%, showing a substantially poorer response both in terms of fatigue and low temperature characteristics and suggesting the RAP had a dominant effect. The present exploratory research seems to support the idea of combining RAP and different industry by-products, such as taconite, as long as the RAP content is kept below a specific threshold.


Sign in / Sign up

Export Citation Format

Share Document