modified binders
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 91)

H-INDEX

20
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7839
Author(s):  
Muhammad Aakif Ishaq ◽  
Filippo Giustozzi

Accurate characterisation and appropriate binder selection are essential to increase the load-induced cracking resistance of asphalt mixtures at an intermediate temperature. Hence, the primary goal of this study was to correlate the cracking resistance exerted by the binder with the cracking performance of asphalt mixtures. The laboratory-based experimental plan covered various types of laboratory tests specified by various agencies and road authorities to study the correlation of a neat bitumen and five polymer-modified binders with their corresponding asphalt mixtures. The fatigue life of the binders was assessed through a Linear Amplitude Sweep (LAS) test and statistically correlated with various load-induced cracking parameters from the indirect tensile test, semi-circular bending (SCB) test, and four points bending beam test (FPBB) of asphalt mixtures at 25 °C. Binders and mixes were further grouped depending on their polymeric family (i.e., modified with a particular type of polymer) to validate their statistical correlation. The indicator that mostly correlated the binder properties with the asphalt mixture properties is the secant modulus from the SCB test. Fatigue parameters obtained through LAS better explain the asphalt fatigue performance obtained through FPBB; specifically, asphalt tests at high strain levels (e.g., 400 micro strain) better correlate to the LAS fatigue parameter (Nf).


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7666
Author(s):  
Navid Hemmati ◽  
Jihyeon Yun ◽  
Mithil Mazumder ◽  
Moon-Sup Lee ◽  
Soon-Jae Lee

The study describes the laboratory assessment (physical and rheological properties) of the binders (PG 64-22 and PG 76-22) modified with Styrene Butadiene Rubber (SBR), and a comprehensive comparison between these two modified binder types. PG 64-22 and PG 76-22 were used as base binders. Both of the base binders were blended with SBR at four different percentages of content (0%, 4%, 6%, and 8% by the weight of the binder). The base and modified binders were artificially short-term and long-term aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were conducted on the SBR modified binder using rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). In depth rutting performance was investigated using Multiple Stress Creep Recovery (MSCR). The results of this study indicated that (1) the addition of SBR into both binders increased the viscosity and polymer modified asphalt (PMA) binders observed to have more significant effect on its viscosity property; (2) the higher the SBR content, the better the rutting resistance of the binder and it is observed that the effect is prominent on the control binder; (3) MSCR test results showed that the SBR modified binders improved the binder percentage recovery and found to have a more significant effect on the PG 76-22 binder compared to PG 64-22; and (4) both the control PG 64-22 and PMA PG 76-22 binders resulted in similar trends on the cracking properties and were found to have insignificant effects due to the addition of an SBR modifier.


2021 ◽  
Vol 920 (1) ◽  
pp. 012021
Author(s):  
H Osman ◽  
M R M Hasan ◽  
N Mukhtar ◽  
M F H M Ghazali ◽  
N A A Raman

Abstract The premature deterioration of asphalt pavements usually occurs due to different moisture damage mechanisms resulting in stripping, ravelling, potholes, and disintegration without proper treatment. Numerous efforts have been taken into consideration to improve the bonding between materials, hence prolonging the pavement life. This study evaluates the performance of asphalt binders incorporating Alkylamines-based (ALM) and Polyalkylene Glycol-based (PLG) bonding enhancers. Each bonding enhancer at 0.5% and 1.0% based on the weight of asphalt binder was separately blended with the conventional asphalt binder 60/70 penetration grade using a high shear mixer at 1000 rpm for 30 minutes at 160°C. The physical and rheological properties of modified binders were evaluated through penetration value, softening point, ductility, elastic recovery, rotational viscosity (RV), and dynamic shear rheometer (DSR) tests. Overall, additions of ALM and PLG show identical penetration grade compared to the control sample. Both ALM and PLG showcase a higher ductility and elastic recovery than the neat binder. The DSR test indicates the incorporation of bonding enhancers improves the modified binders’ rutting performance. While the application of ALM at 0.5% dosage increased the binder failure temperature out of all the tested samples, where the failure temperature is at 70°C, compared to others at 64°C. Studies at mastics and mixture levels should be conducted to appropriately understand the effect of bonding enhancer on the bituminous materials.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3733
Author(s):  
Luca Desidery ◽  
Michele Lanotte

Over the last years, the replacement of traditional polymer modifiers with waste plastics has attracted increasing interest. The implementation of such technology would allow a drastic reduction of both production cost and landfill disposal of wastes. Among all, polyethylene-based plastics have been proved suitable for this purpose. The research activities presented in this paper aim to assess the synergistic effect of polyethylene and Fischer–Tropsch waxes on the viscoelastic properties and performance of the bitumen. In order to reduce the blending time, waxes, and polyethylene need to be added simultaneously. In fact, the presence of the waxes reduces the polarity of the bitumen matrix and increases the affinity with the polymer promoting its dispersion. Results demonstrate that the chain length of the waxes, the form of the added waste polyethylene, and the blending protocol have critical effects on the time-evolution of such properties. Short-chain waxes have a detrimental impact on the rutting resistance regardless of the blending protocol. On the contrary, long-chain waxes improve the overall behavior of the polyethylene-modified binders and, in particular, the resistance to permanent deformations.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ali Huddin Ibrahim ◽  
Mohd Rosli Mohd Hasan ◽  
Ashiru Sani ◽  
Sharvin Poovaneshvaran ◽  
Tracy Leh Xin Wong ◽  
...  

Industrial solid waste has been widely used as an alternative additive for bituminous material modification. This study aims to evaluate the basic properties and quantify the leaching potential of modified asphalt binders incorporating crumb rubber powder (CRP) from waste tires and tin slag (TS) for a local smelting company. Three percentages of CRP and TS, at 5, 10, and 15%, were considered. The conventional asphalt binder (PEN 60/70), CRP, and TS-based modified asphalt binders were analyzed for toxicity, softening point, penetration value, elastic recovery, torsional recovery (TR), and coatability index. The findings indicated that the addition of the waste materials led to no significant heavy metal content in the asphalt binder mix. Moreover, the basic and physical properties of the asphalt binders were also improved by 5, 10, and 15% of the waste, respectively. However, TS waste exhibited limited effects on all the parameters and had a 5% optimum dosage. The modified binders’ results showed that the CRP modified asphalt binders had fewer heavy metals and responded more to elastic recovery and coatability.


2021 ◽  
Vol 29 (3) ◽  
pp. 22-30
Author(s):  
Majda Belhaj ◽  
Pavla Vacková ◽  
Jan Valentin

Abstract Recently, environmental concerns have become a primary driving force in most countries and industries dealing with natural resources. As a part of this category, asphalt pavement industry is trying to implement more green and sustainable features in its products, while maintaining the mechanical and performance-based properties of the resulting asphalt mixtures. Among potential recycled materials, vehicle tires and aged asphalt pavement have been demonstrated to show economic, ecological, and behavioral improvements in the mixtures. However, mixtures with a high content of reclaimed asphalt (RA) and crumb rubber present some limitations. Therefore, using another group of additives, i.e., a warm mix asphalt (WMA) additive, has been considered. The presented paper investigates the use of an elevated content of RA with different crumb rubber modified binders and (in some mixtures) a warm mix additive in an asphalt concrete (AC) binder mix. Regular empirical tests have been conducted and more advanced performance or functional characteristics, i.e., stiffness, thermal induced cracking, resistance to permanent deformation, complex modulus have been determined and evaluated. Selected results are presented in the paper.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256030
Author(s):  
Abhinay Kumar ◽  
Rajan Choudhary ◽  
Ankush Kumar

Globally, the growing volume of waste tires and plastics has posed significant concerns about their sustainable and economical disposal. Pyrolysis provides a way for effective treatment and management of these wastes, enabling recovery of energy and produces solid pyrolytic char as a by-product. The use of pyrolytic chars in asphalt binder modification has recently gained significant interest among researchers. As asphalt binder aging influences the cracking, rutting, and moisture damage performance of asphalt binder and the mixtures, evaluation of aging characteristics of char modified asphalt binders is quite important. The main objective of this study is the investigation of the aging characteristics of asphalt binders modified with waste tire pyrolytic char (TPC) and waste plastic pyrolytic char (PPC) through rheological and spectroscopic evaluations. To imitate short-term and long-term aging conditions, the asphalt binders were first treated in a rolling thin film oven (RTFO) and then in a pressure aging vessel (PAV). The aging characteristics were determined using four rheological aging indices based on complex modulus (G*), phase angle (δ), zero shear viscosity (ZSV), and non-recoverable creep compliance (Jnr) from multiple stress creep and recovery (MSCR) test. The fatigue cracking potential was then measured through binder yield energy test (BYET). These parameters were measured through a dynamic shear rheometer. Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy analyses were then used to investigate changes in chemical composition due to aging in the char modified binders. Both TPC and PPC improved the high-temperature deformation resistance properties of asphalt binder. The TPC-modified binder showed better aging resistance than the control and PPC-modified binders, based on the different rheological and spectroscopic indices. The pyrolytic char modified binders also demonstrated good fatigue performance.


Sign in / Sign up

Export Citation Format

Share Document