Residual mechanical properties of Q890 high-strength structural steel after exposure to fire

2021 ◽  
Vol 304 ◽  
pp. 124661
Author(s):  
X. Zeng ◽  
W.B. Wu ◽  
J.S. Huo ◽  
M. Elchalakani
2011 ◽  
Vol 194-196 ◽  
pp. 292-295 ◽  
Author(s):  
Jian Kang ◽  
Zhao Dong Wang ◽  
Guo Dong Wang

To develop 590/780MPa grade low yield ratio structural steel, the effects of ultra fast cooling (UFC) new process on microstructure and mechanical properties were investigated. The results showed that the low yield ratio and high strength can be obtained by proper phase compositions including relative soft phase and hard phase. For the process of UFC + air cooling, when UFC final cooling temperature was 521°C, 22.5% M-A second hard phases were distributed on bainite ferrite matrix in steel No.A2. The mechanical properties can meet requirement of 590MPa grade low yield ratio structural steel. For the process of air cooling + UFC, when UFC initial cooling temperature was 781°C, the multiphase composed of 28.3% ferrite and other bainite / martensite lath structure can ensure the high strength and low yield ratio of steel No.B1. And performance indexes can meet the requirement of 780MPa grade low yield ratio structural steel.


2014 ◽  
Vol 629-630 ◽  
pp. 259-264
Author(s):  
Gai Fei Peng ◽  
Xiao Li Wang ◽  
Lin Wang

An experimental investigation was conducted to study residual mechanical properties of Ultra-High-Strength concrete with different dosages of glassified micro-bubble after exposure to high temperature. After exposure to different target temperatures (room temperature, 200 °C, 400 °C, 600 °C,800 °C), residual mechanical properties (residual compressive strength, residual tensile splitting strength, residual fracture energy) of Ultra-High-Strength concrete under different conditions including 1 water-binder ratios (0.18), 3 different contents of glassified micro-bubble (0%, 40%, 60%) were all investigated. The effect of different dosage of glassified micro-bubble was studied on residual mechanical properties of Ultra-High-Strength concrete after exposure to high temperature. The results indicate that the variations of different kinds of Ultra-High-Strength concrete with different dosage of glassified micro-bubble are basically the same. With the increase of temperature, the residual mechanical properties increase at first, then decrease. The residual mechanical properties decrease after exposure to high temperature of 800 °C.


1988 ◽  
Vol 110 (3) ◽  
pp. 171-176
Author(s):  
Y. Nakano ◽  
Y. Saito ◽  
K. Amano ◽  
M. Koda ◽  
Y. Sannomiya ◽  
...  

This paper describes the metallurgical approaches for producing 415MPa and 460MPa yield strength offshore structural steel plates and the mechanical properties of the steel plates and their welded joints. A thermo-mechanical control process (TMCP) was adopted to manufacture YP415MPa and YP460MPa steel plates with weldability comparable to conventional YP355MPa steel plates. The Charpy impact and CTOD tests of the steel plates and their welded joints proved to be very good.


2014 ◽  
Vol 922 ◽  
pp. 94-101
Author(s):  
Zhao Dong Wang ◽  
Jin Bao Zhu ◽  
Xiang Tao Deng ◽  
Bing Xing Wang ◽  
Yong Tian ◽  
...  

The new generation thermo-mechanical controlled processing (TMCP) technology based on advanced cooling technique and equipment is introduced here in the context of 960MPa grade high strength structural steel plates. This new technology accurately controls the cooling rate and temperature, with strong influence on phase transformation and precipitation including microstructure and mechanical properties of the steel. The application of the newly developed technology applied to the production of 960MPa grade high strength structural steel demonstrated its effectiveness, especially in improving low temperature impact toughness. The yield strength was 980~1000 MPa and tensile strength 1080~1200 MPa, with impact toughness approaching 150J at-40°C.Keywords: New generation TMCP technology; Ultra fast cooling process; high strength steels; mechanical properties


Sign in / Sign up

Export Citation Format

Share Document