Influence of non-linear chloride binding on the determination of apparent chloride diffusion coefficient for cement paste with mineral additives

2021 ◽  
Vol 308 ◽  
pp. 125017
Author(s):  
Chao Yang ◽  
Shuguang Wang ◽  
Yewen Tan ◽  
Chengqiang Zhang
2011 ◽  
Vol 477 ◽  
pp. 56-64 ◽  
Author(s):  
Nattapong Damrongwiriyanupap ◽  
Yu Chang Liang ◽  
Yun Ping Xi

In recent years, recycled aggregate concrete has been used in reinforced concrete structures. Concrete structures exposed to chloride environment often encountera premature deterioration due to corrosion of steel reinforcement. In order to avoid unplanned maintenances or repairs, it is necessary to develop a reliable prediction model for the chloride diffusion in concrete. The basic formulation of the transport theory will be presented first and then its application to Recycled Aggregate Concrete (RAC) will follow. Chloride diffusion in RAC is different from the diffusion in regular concrete, because the material parameters of RAC such as chloride diffusion coefficient are different from those of regular concrete. In this paper, a multi-scale and multi-phase model will be developed to characterize theinternal structure of the recycled aggregate with a layer of residual cement paste on the surface of natural aggregate and another layer of surface treatment material on the surface of the residual cement paste. The multi-scale and multi-phase model will also be used to characterize the chloride diffusion coefficient of RAC. The numerical analysis of the diffusion equations is performed by using finite element method.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 359 ◽  
Author(s):  
Yunsu Lee ◽  
Seungmin Lim ◽  
Hanseung Lee

Whether chloride resistance is highly influenced by chloride binding capacity remains unknown. In this study, the chloride resistance of Portland cement-based mortar incorporating aluminate cement and calcium carbonate was investigated considering the chloride binding capacity, pore structures and chloride diffusion coefficient from non-steady state chloride migration and natural chloride diffusion. The cement hydrates were investigated using X-ray diffraction and thermogravimetric analysis. The chloride binding capacity was evaluated based on the chloride adsorption from the solutions using the adsorption isotherm. The aluminate cement, as an available alumina source, can stimulate the formulation of layered double hydroxides, which in turn can increase the chloride binding capacity. The results of mercury intrusion porosimetry show that non-substituted (control) and substituted (only aluminate cement) specimens have capillary pore volume 8.9 vol % and 8.2 vol %, respectively. However, the specimen substituted with aluminate cement and calcium carbonate shows a higher capillary volume (12.9 vol %), which correlates with the chloride diffusion coefficient. Although the specimen substituted with calcium carbonate has a higher chloride binding capacity than the control, it does not necessarily affect the decrease in the chloride diffusion coefficient. The capillary pore volume can affect not only the chloride diffusion but also the chloride adsorption.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 811 ◽  
Author(s):  
Hong Zhou ◽  
Xin-Zhu Zhou ◽  
Jian Zhang ◽  
Jian-Jun Zheng

The chloride diffusion coefficient of concrete plays an essential role in the durability assessment and design of concrete structures built in chloride-laden environments. The purpose of this paper is to present an effective medium method (EMM) for evaluating the chloride diffusion coefficient of mature fly ash cement paste. In this method, a numerical method is used to estimate the degrees of hydration of cement and fly ash. Fly ash cement paste is then modeled as a two-phase composite material, composed of a solid phase and a pore space. By introducing the percolation theory, the EMM is modified to derive the chloride diffusion coefficient of fly ash cement paste in an analytical manner. To verify the EMM, a chloride diffusion test of fly ash cement paste at a curing age of up to 540 days is conducted. It is shown that, within a reasonable fly ash content, a larger fly ash content and/or curing age results in a smaller chloride diffusion coefficient. The chloride diffusion coefficient decreases with a decreasing water/binder ratio. Finally, the validity of the EMM is verified with experimental results.


Sign in / Sign up

Export Citation Format

Share Document