scholarly journals Study on compatibility of poplar wood and Portland cement

2022 ◽  
Vol 314 ◽  
pp. 125586
Author(s):  
Yixu Yang ◽  
Xingong Li
Keyword(s):  
1898 ◽  
Vol 46 (1192supp) ◽  
pp. 19108-19109
Author(s):  
Bernard L. Green

1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


2000 ◽  
Vol 49 (2) ◽  
pp. 209-214
Author(s):  
Minoru TAKEHIRO ◽  
Seishi GOTO ◽  
Koji IOKU ◽  
Hirotaka FUJIMORI

GIS Business ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 158-165 ◽  
Author(s):  
Dr. Sarvesh PS Rajput

This study reported that the addition of nano-silica enhances the mechanical characteristics of concrete as its compressive, flexural and tensile split strengths are increased. As a comparison mixture to equate it along with nano-modified concrete, ordinary samples of Portland cement (OPC) have been utilized. Herein, upto 6.0 percent of OPC has been substituted by nanosilica. In fact, the introduction of nanosilica improves mechanical and microstructural characteristics of concrete by significantly (28 to 35%). The finding therefore, indicated that partly replacing OPC with up to 5 percent nanosilica increases the mechanical and microstructural properties cured up to ninety days as opposed to the standard OPC mix.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

Sign in / Sign up

Export Citation Format

Share Document