Design of synthetic microbial consortia for gut microbiota modulation

2019 ◽  
Vol 49 ◽  
pp. 52-59 ◽  
Author(s):  
Jorge F. Vázquez-Castellanos ◽  
Anaïs Biclot ◽  
Gino Vrancken ◽  
Geert RB Huys ◽  
Jeroen Raes
RSC Advances ◽  
2016 ◽  
Vol 6 (81) ◽  
pp. 78161-78169 ◽  
Author(s):  
Jiajun Hu ◽  
Yiyun Xue ◽  
Jixiang Li ◽  
Lei Wang ◽  
Shiping Zhang ◽  
...  

CO2 fixation efficiency of the devised synthetic microbial consortia with both autotrophic–autotrophic and autotrophic–heterotrophic microbial interactions were higher than the sum of theoretical CO2 fixation efficiency of the microbial components.


2021 ◽  
Author(s):  
Elizabeth Fleming ◽  
Victor Pabst ◽  
Amelia Hoyt ◽  
Wei Zhou ◽  
Rachel Hardy ◽  
...  

Genomics-driven discovery of microbial species have provided extraordinary insights into the biodiversity of human microbiota. High resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. Here, we describe and validate a streamlined workflow for cultivating microbes from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Razan N. Alnahhas ◽  
Mehdi Sadeghpour ◽  
Ye Chen ◽  
Alexis A. Frey ◽  
William Ott ◽  
...  

2012 ◽  
Vol 23 (5) ◽  
pp. 798-802 ◽  
Author(s):  
Jasmine Shong ◽  
Manuel Rafael Jimenez Diaz ◽  
Cynthia H Collins

2016 ◽  
Vol 1 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Xiaoqiang Jia ◽  
Chang Liu ◽  
Hao Song ◽  
Mingzhu Ding ◽  
Jin Du ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicolas Kylilis ◽  
Zoltan A. Tuza ◽  
Guy-Bart Stan ◽  
Karen M. Polizzi

Author(s):  
Sally Wang ◽  
Gregory F. Payne ◽  
William E. Bentley

Quorum sensing (QS) is a molecular signaling modality that mediates molecular-based cell–cell communication. Prevalent in nature, QS networks provide bacteria with a method to gather information from the environment and make decisions based on the intel. With its ability to autonomously facilitate both inter- and intraspecies gene regulation, this process can be rewired to enable autonomously actuated, but molecularly programmed, genetic control. On the one hand, novel QS-based genetic circuits endow cells with smart functions that can be used in many fields of engineering, and on the other, repurposed QS circuitry promotes communication and aids in the development of synthetic microbial consortia. Furthermore, engineered QS systems can probe and intervene in interkingdom signaling between bacteria and their hosts. Lastly, QS is demonstrated to establish conversation with abiotic materials, especially by taking advantage of biological and even electronically induced assembly processes; such QS-incorporated biohybrid devices offer innovative ways to program cell behavior and biological function.


Sign in / Sign up

Export Citation Format

Share Document