scholarly journals Species and strain cultivation of skin, oral, and gut microbiota

2021 ◽  
Author(s):  
Elizabeth Fleming ◽  
Victor Pabst ◽  
Amelia Hoyt ◽  
Wei Zhou ◽  
Rachel Hardy ◽  
...  

Genomics-driven discovery of microbial species have provided extraordinary insights into the biodiversity of human microbiota. High resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. Here, we describe and validate a streamlined workflow for cultivating microbes from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elizabeth Fleming ◽  
Victor Pabst ◽  
Zoe Scholar ◽  
Ruoyun Xiong ◽  
Anita Y. Voigt ◽  
...  

Abstract Background Genomics-driven discoveries of microbial species have provided extraordinary insights into the biodiversity of human microbiota. In addition, a significant portion of genetic variation between microbiota exists at the subspecies, or strain, level. High-resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. High-throughput approaches are needed to acquire and identify the significant species- and strain-level diversity present in the oral, skin, and gut microbiome. Here, we describe and validate a streamlined workflow for cultivating dominant bacterial species and strains from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling. Results Of total genera discovered by either metagenomic sequencing or culturomics, our cultivation pipeline recovered between 18.1–44.4% of total genera identified. These represented a high proportion of the community composition reconstructed with metagenomic sequencing, ranging from 66.2–95.8% of the relative abundance of the overall community. Fourier-Transform Infrared spectroscopy (FT-IR) was effective in differentiating genetically distinct strains compared with whole-genome sequencing, but was less effective as a proxy for genetic distance. Conclusions Use of a streamlined set of conditions selected for cultivation of skin, oral, and gut microbiota facilitates recovery of dominant microbes and their strain variants from a relatively large sample set. FT-IR spectroscopy allows rapid differentiation of strain variants, but these differences are limited in recapitulating genetic distance. Our data highlights the strength of our cultivation and characterization pipeline, which is in throughput, comparisons with high-resolution genomic data, and rapid identification of strain variation.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323951
Author(s):  
Naoki Sugimura ◽  
Qing Li ◽  
Eagle Siu Hong Chu ◽  
Harry Cheuk Hay Lau ◽  
Winnie Fong ◽  
...  

ObjectiveUsing faecal shotgun metagenomic sequencing, we identified the depletion of Lactobacillus gallinarum in patients with colorectal cancer (CRC). We aimed to determine the potential antitumourigenic role of L. gallinarum in colorectal tumourigenesis.DesignThe tumor-suppressive effect of L. gallinarum was assessed in murine models of CRC. CRC cell lines and organoids derived from patients with CRC were cultured with L. gallinarum or Escherichia coli MG1655 culture-supernatant to evaluate cell proliferation, apoptosis and cell cycle distribution. Gut microbiota was assessed by 16S ribosomal DNA sequencing. Antitumour molecule produced from L. gallinarum was identified by liquid chromatography mass spectrometry (LC-MS/MS) and targeted mass spectrometry.ResultsL. gallinarum significantly reduced intestinal tumour number and size compared with E. coli MG1655 and phosphate-buffered saline in both male and female murine intestinal tumourigenesis models. Faecal microbial profiling revealed enrichment of probiotics and depletion of pathogenic bacteria in L. gallinarum-treated mice. Culturing CRC cells with L. gallinarum culture-supernatant (5%, 10% and 20%) concentration-dependently suppressed cell proliferation and colony formation. L. gallinarum culture-supernatant significantly promoted apoptosis in CRC cells and patient-derived CRC organoids, but not in normal colon epithelial cells. Only L. gallinarum culture-supernatant with fraction size <3 kDa suppressed proliferation in CRC cells. Using LC-MS/MS, enrichments of indole-3-lactic acid (ILA) was identified in both L. gallinarum culture-supernatant and the gut of L. gallinarum-treated mice. ILA displayed anti-CRC growth in vitro and inhibited intestinal tumourigenesis in vivo.ConclusionL. gallinarum protects against intestinal tumourigenesis by producing protective metabolites that can promote apoptosis of CRC cells.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sally L. Bornbusch ◽  
Rachel L. Harris ◽  
Nicholas M. Grebe ◽  
Kimberly Roche ◽  
Kristin Dimac-Stohl ◽  
...  

Abstract Background Antibiotics alter the diversity, structure, and dynamics of host-associated microbial consortia, including via development of antibiotic resistance; however, patterns of recovery from microbial imbalances and methods to mitigate associated negative effects remain poorly understood, particularly outside of human-clinical and model-rodent studies that focus on outcome over process. To improve conceptual understanding of host-microbe symbiosis in more naturalistic contexts, we applied an ecological framework to a non-traditional, strepsirrhine primate model via long-term, multi-faceted study of microbial community structure before, during, and following two experimental manipulations. Specifically, we administered a broad-spectrum antibiotic, either alone or with subsequent fecal transfaunation, to healthy, male ring-tailed lemurs (Lemur catta), then used 16S rRNA and shotgun metagenomic sequencing to longitudinally track the diversity, composition, associations, and resistomes of their gut microbiota both within and across baseline, treatment, and recovery phases. Results Antibiotic treatment resulted in a drastic decline in microbial diversity and a dramatic alteration in community composition. Whereas microbial diversity recovered rapidly regardless of experimental group, patterns of microbial community composition reflected long-term instability following treatment with antibiotics alone, a pattern that was attenuated by fecal transfaunation. Covariation analysis revealed that certain taxa dominated bacterial associations, representing potential keystone species in lemur gut microbiota. Antibiotic resistance genes, which were universally present, including in lemurs that had never been administered antibiotics, varied across individuals and treatment groups. Conclusions Long-term, integrated study post antibiotic-induced microbial imbalance revealed differential, metric-dependent evidence of recovery, with beneficial effects of fecal transfaunation on recovering community composition, and potentially negative consequences to lemur resistomes. Beyond providing new perspectives on the dynamics that govern host-associated communities, particularly in the Anthropocene era, our holistic study in an endangered species is a first step in addressing the recent, interdisciplinary calls for greater integration of microbiome science into animal care and conservation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gensheng Liu ◽  
Pinghua Li ◽  
Liming Hou ◽  
Qing Niu ◽  
Guang Pu ◽  
...  

Making full use of high fiber and low-cost crop coproducts is helpful to alleviate the situation of people and livestock competing for crops. Digestion of dietary fibers in pigs is mainly through microbial fermentation in the large intestine. To reveal microbiota related to fiber digestion in pigs, fecal samples have been collected from 274 healthy female Suhuai pigs at 160 days of age under the same feeding conditions and have measured apparent neutral detergent fiber (NDF) and acid detergent fiber (ADF) digestibility. Samples from Suhuai pigs with extreme high and low apparent NDF digestibility and extreme high and low apparent ADF digestibility were subjected to shotgun metagenomic sequencing. At the species level, 62 microbial species in H_NDF group and 54 microbial species in H_ADF group were related to high fiber digestibility. Among them, Lachnospiraceae bacterium 3-1 and Alistipes sp. CAG:514 may be new types of microorganisms associated with fiber digestion. In addition, we found that more abundant GH5 and GH48 family (contribute to cellulose degradation) genes, GH39 and GH53 family (contribute to hemicellulose degradation) genes in microorganisms may contribute to the higher apparent NDF digestibility of pigs, and more abundant GH3 and GH9 family (contribute to cellulose degradation) genes in microorganisms may contribute to the higher apparent ADF digestibility of pigs. The abundance of AA4 family (helps in lignin degradation) genes in H_NDF and H_ADF groups was significantly higher than that in L_NDF and L_ADF groups, respectively (P &lt; 0.05). Three pathways in H_NDF group and four pathways in H_ADF group are important pathways associated with degradation of non-starch polysaccharides, and their relative abundance is significantly higher than that in L_NDF and L_ADF groups, respectively. Gut microbiota of Suhuai pigs with high apparent fiber digestibility had higher abundance of genes and microbiota related to fiber digestion and may have stronger fiber digestion potential compared with low apparent fiber digestibility group. This study revealed that the characteristics of gut microbiota and microbial gene functions of pigs with high fiber apparent digestibility, which provided a theoretical basis and reference for further understanding the impact of gut microbiota on fiber digestibility of pigs.


Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 351 ◽  
Author(s):  
Jisun H. J. Lee ◽  
Jiangjiang Zhu

Gut microbiota plays essential roles in maintaining gut homeostasis. The composition of gut microbes and their metabolites are altered in response to diet and remedial agents such as antibiotics. However, little is known about the effect of antibiotics on the gut microbiota and their volatile metabolites. In this study, we evaluated the impact of a moderate level of ampicillin treatment on volatile fatty acids (VFAs) of gut microbial cultures using an optimized real-time secondary electrospray ionization coupled with high-resolution mass spectrometry (SESI-HRMS). To evaluate the ionization efficiency, different types of electrospray solvents and concentrations of formic acid as an additive (0.01, 0.05, and 0.1%, v/v) were tested using VFAs standard mixture (C2–C7). As a result, the maximum SESI-HRMS signals of all studied m/z values were observed from water with 0.01% formic acid than those from the aqueous methanolic solutions. Optimal temperatures of sample inlet and ion chamber were set at 130 °C and 85 °C, respectively. SESI spray pressure at 0.5 bar generated the maximum intensity than other tested values. The optimized SESI-HRMS was then used for the analysis of VFAs in gut microbial cultures. We detected that the significantly elevated C4 and C7 VFAs in the headspace of gut microbial cultures six hours after ampicillin treatment (1 mg/L). In conclusion, our results suggested that the optimized SESI-HRMS method can be suitable for the analysis of VFAs from gut microbes in a rapid, sensitive, and non-invasive manner.


mSystems ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Bryn C. Taylor ◽  
Franck Lejzerowicz ◽  
Marion Poirel ◽  
Justin P. Shaffer ◽  
Lingjing Jiang ◽  
...  

ABSTRACT Lifestyle factors, such as diet, strongly influence the structure, diversity, and composition of the microbiome. While we have witnessed over the last several years a resurgence of interest in fermented foods, no study has specifically explored the effects of their consumption on gut microbiota in large cohorts. To assess whether the consumption of fermented foods is associated with a systematic signal in the gut microbiome and metabolome, we used a multi-omic approach (16S rRNA amplicon sequencing, metagenomic sequencing, and untargeted mass spectrometry) to analyze stool samples from 6,811 individuals from the American Gut Project, including 115 individuals specifically recruited for their frequency of fermented food consumption for a targeted 4-week longitudinal study. We observed subtle but statistically significant differences between consumers and nonconsumers in beta diversity as well as differential taxa between the two groups. We found that the metabolome of fermented food consumers was enriched with conjugated linoleic acid (CLA), a putatively health-promoting molecule. Cross-omic analyses between metagenomic sequencing and mass spectrometry suggest that CLA may be driven by taxa associated with fermented food consumers. Collectively, we found modest yet persistent signatures associated with fermented food consumption that appear present in multiple -omic types which motivate further investigation of how different types of fermented food impact the gut microbiome and overall health. IMPORTANCE Public interest in the effects of fermented food on the human gut microbiome is high, but limited studies have explored the association between fermented food consumption and the gut microbiome in large cohorts. Here, we used a combination of omics-based analyses to study the relationship between the microbiome and fermented food consumption in thousands of people using both cross-sectional and longitudinal data. We found that fermented food consumers have subtle differences in their gut microbiota structure, which is enriched in conjugated linoleic acid, thought to be beneficial. The results suggest that further studies of specific kinds of fermented food and their impacts on the microbiome and health will be useful.


2020 ◽  
Author(s):  
Jie Cheng ◽  
Yuchen Tang ◽  
Baoquan Bao ◽  
Ping Zhang

<p><a></a><a></a><a></a><a><b>Objective</b></a>: To screen all compounds of Agsirga based on the HPLC-Q-Exactive high-resolution mass spectrometry and find potential inhibitors that can respond to 2019-nCoV from active compounds of Agsirga by molecular docking technology.</p> <p><b>Methods</b>: HPLC-Q-Exactive high-resolution mass spectrometry was adopted to identify the complex components of Mongolian medicine Agsirga, and separated by the high-resolution mass spectrometry Q-Exactive detector. Then the Orbitrap detector was used in tandem high-resolution mass spectrometry, and the related molecular and structural formula were found by using the chemsipider database and related literature, combined with precise molecular formulas (errors ≤ 5 × 10<sup>−6</sup>) , retention time, primary mass spectra, and secondary mass spectra information, The fragmentation regularities of mass spectra of these compounds were deduced. Taking ACE2 as the receptor and deduced compounds as the ligand, all of them were pretreated by discover studio, autodock and Chem3D. The molecular docking between the active ingredients and the target protein was studied by using AutoDock molecular docking software. The interaction between ligand and receptor is applied to provide a choice for screening anti-2019-nCoV drugs.</p> <p><b>Result</b>: Based on the fragmentation patterns of the reference compounds and consulting literature, a total of 96 major alkaloids and stilbenes were screened and identified in Agsirga by the HPLC-Q-Exactive-MS/MS method. Combining with molecular docking, a conclusion was got that there are potential active substances in Mongolian medicine Agsirga which can block the binding of ACE2 and 2019-nCoV at the molecular level.</p>


Sign in / Sign up

Export Citation Format

Share Document