Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black

2013 ◽  
Vol 590 ◽  
pp. 153-159 ◽  
Author(s):  
Liliane Bokobza ◽  
Jean-Luc Bruneel ◽  
Michel Couzi
Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 732
Author(s):  
Yuteng Zhu ◽  
Mahtab Assadian ◽  
Maziar Ramezani ◽  
Kean C. Aw

Demand for highly stretchable mechanical sensors for use in the fields of soft robotics and wearable sensors has been constantly rising. Carbon based materials as piezo-resistive material are low-cost and have been widely used. In this paper instead of using the controversial carbon-nanotubes, carbon black nano-particles mixed with Ecoflex® as piezo-resistive nanocomposite are used and measure strain up to 100%. Two fabrication techniques incorporating the printing (namely-“layer-upon-layer” and “embedded”) of the carbon black nanocomposite will be explored and the performances of the sensors made from these techniques will be evaluated.


Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 54 ◽  
Author(s):  
Harish Devaraj ◽  
Tim Giffney ◽  
Adeline Petit ◽  
Mahtab Assadian ◽  
Kean Aw

Demand for highly compliant mechanical sensors for use in the fields of robotics and wearable electronics has been constantly rising in recent times. Carbon based materials, and especially, carbon nanotubes, have been widely studied as a candidate piezoresistive sensing medium in these devices due to their favorable structural morphology. In this paper three different carbon based materials, namely carbon black, graphene nano-platelets, and multi-walled carbon nanotubes, were utilized as large stretch sensors capable of measuring stretches over 250%. These stretch sensors can be used in robotic hands/arms to determine the angular position of joints. Analysis was also carried out to understand the effect of the morphologies of the carbon particles on the electromechanical response of the sensors. Sensors with gauge factors ranging from one to 1.75 for strain up to 200% were obtained. Among these sensors, the stretch sensors with carbon black/silicone composite were found to have the highest gauge factor while demonstrating acceptable hysteresis in most robotic hand applications. The highly flexible stretch sensors demonstrated in this work show high levels of compliance and conformance making them ideal candidates as sensors for soft robotics.


2021 ◽  
Vol 127 (2) ◽  
Author(s):  
Min Il Kim ◽  
Jong Hoon Cho ◽  
Jin Ung Hwang ◽  
Byong Chol Bai ◽  
Ji Sun Im

2021 ◽  
Author(s):  
Apostolos Koutsioukis ◽  
Vassiliki Belessi ◽  
Vasilios Georgakilas

A green approach for the functionalization of multiwalled carbon nanotubes (MWNTs) with hydrophilic groups and their use for the development of an ecofriendly conductive ink is described here. A known...


2021 ◽  
Vol 7 (2) ◽  
pp. 31
Author(s):  
Elena F. Sheka

sp2 Nanocarbons such as fullerenes, carbon nanotubes, and graphene molecules are not only open-shell species, but spatially extended, due to which their chemistry is quite specific. Cogently revealed dependence of the final products composition on size and shape of the carbons in use as well as on the chemical prehistory is accumulated in a particular property—the stabilization of the species’ radical efficiency, thus providing the matter of stable radicals. If the feature is highly restricted and rarely available in ordinary chemistry, in the case of sp2 nanocarbons it is just an ordinary event providing, say, tons-in-mass stable radicals when either producing such widely used technological products as carbon black or dealing with deposits of natural sp2 carbons such as anthracite, shungite carbon, and other. Suggested in the paper is the consideration of stable radicals of sp2 nanocarbons from the standpoint of spin-delocalized topochemistry. Characterized in terms of the total and atomically partitioned number of effectively unpaired electrons as well as of the distribution of the latter over carbon atoms and described by selectively determined barriers of different reactions exhibiting topological essence of intermolecular interaction, sp2 nanocarbons reveal a peculiar topokinetics that lays the foundation of the stability of their radical properties.


2014 ◽  
Vol 1678 ◽  
Author(s):  
Wesley D. Tennyson

ABSTRACTCarbon nanotubes (CNTs) have been shown to be a viable conductive additive in Li-Ion batteries [1]. By using CNTs battery life, energy, and power capability can all be improved over carbon black, the traditional conductive additive. A significantly smaller weight percentage (5% CNTs) is needed to get the same conductivity as 20% carbon black. Many of the previous efforts found that a combination of conductive additives was most advantageous [2]. Unfortunately many of these efforts did not attend to the unique challenge that dispersing nanotubes presents and used non-optimal methods to disperse CNTs (e.g. ball milling) [3,4]. With poor dispersion a stable and resilient conductive network in the cathode is hard to form with CNTs alone. Here we investigate the formation of LiFePO₄ with CNTs using a polyol process synthesis.


Sign in / Sign up

Export Citation Format

Share Document