scholarly journals Printing of Soft Stretch Sensor from Carbon Black Composites

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 732
Author(s):  
Yuteng Zhu ◽  
Mahtab Assadian ◽  
Maziar Ramezani ◽  
Kean C. Aw

Demand for highly stretchable mechanical sensors for use in the fields of soft robotics and wearable sensors has been constantly rising. Carbon based materials as piezo-resistive material are low-cost and have been widely used. In this paper instead of using the controversial carbon-nanotubes, carbon black nano-particles mixed with Ecoflex® as piezo-resistive nanocomposite are used and measure strain up to 100%. Two fabrication techniques incorporating the printing (namely-“layer-upon-layer” and “embedded”) of the carbon black nanocomposite will be explored and the performances of the sensors made from these techniques will be evaluated.

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 42 ◽  
Author(s):  
Eshwar Cholleti ◽  
Jonathan Stringer ◽  
Mahtab Assadian ◽  
Virginie Battmann ◽  
Chris Bowen ◽  
...  

Wearable electronics and soft robotics are emerging fields utilizing soft and stretchable sensors for a variety of wearable applications. In this paper, the fabrication of a highly stretchable capacitive sensor with a printed carbon black/Ecoflex interdigital capacitor is presented. The highly stretchable capacitive sensor was fabricated on a substrate made from barium titanate–EcoflexTM 00-30 composite, and could withstand stretching up to 100%. The designed highly stretchable capacitive sensor was robust, and showed good repeatability and consistency when stretched and relaxed for over 1000 cycles.


Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 54 ◽  
Author(s):  
Harish Devaraj ◽  
Tim Giffney ◽  
Adeline Petit ◽  
Mahtab Assadian ◽  
Kean Aw

Demand for highly compliant mechanical sensors for use in the fields of robotics and wearable electronics has been constantly rising in recent times. Carbon based materials, and especially, carbon nanotubes, have been widely studied as a candidate piezoresistive sensing medium in these devices due to their favorable structural morphology. In this paper three different carbon based materials, namely carbon black, graphene nano-platelets, and multi-walled carbon nanotubes, were utilized as large stretch sensors capable of measuring stretches over 250%. These stretch sensors can be used in robotic hands/arms to determine the angular position of joints. Analysis was also carried out to understand the effect of the morphologies of the carbon particles on the electromechanical response of the sensors. Sensors with gauge factors ranging from one to 1.75 for strain up to 200% were obtained. Among these sensors, the stretch sensors with carbon black/silicone composite were found to have the highest gauge factor while demonstrating acceptable hysteresis in most robotic hand applications. The highly flexible stretch sensors demonstrated in this work show high levels of compliance and conformance making them ideal candidates as sensors for soft robotics.


2021 ◽  
Vol 127 (2) ◽  
Author(s):  
Min Il Kim ◽  
Jong Hoon Cho ◽  
Jin Ung Hwang ◽  
Byong Chol Bai ◽  
Ji Sun Im

2021 ◽  
Author(s):  
Apostolos Koutsioukis ◽  
Vassiliki Belessi ◽  
Vasilios Georgakilas

A green approach for the functionalization of multiwalled carbon nanotubes (MWNTs) with hydrophilic groups and their use for the development of an ecofriendly conductive ink is described here. A known...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jian Zhang ◽  
Jingjing Zhang ◽  
Feng He ◽  
Yijun Chen ◽  
Jiawei Zhu ◽  
...  

AbstractExploring low-cost and earth-abundant oxygen reduction reaction (ORR) electrocatalyst is essential for fuel cells and metal–air batteries. Among them, non-metal nanocarbon with multiple advantages of low cost, abundance, high conductivity, good durability, and competitive activity has attracted intense interest in recent years. The enhanced ORR activities of the nanocarbons are normally thought to originate from heteroatom (e.g., N, B, P, or S) doping or various induced defects. However, in practice, carbon-based materials usually contain both dopants and defects. In this regard, in terms of the co-engineering of heteroatom doping and defect inducing, we present an overview of recent advances in developing non-metal carbon-based electrocatalysts for the ORR. The characteristics, ORR performance, and the related mechanism of these functionalized nanocarbons by heteroatom doping, defect inducing, and in particular their synergistic promotion effect are emphatically analyzed and discussed. Finally, the current issues and perspectives in developing carbon-based electrocatalysts from both of heteroatom doping and defect engineering are proposed. This review will be beneficial for the rational design and manufacturing of highly efficient carbon-based materials for electrocatalysis.


2021 ◽  
Vol 7 (2) ◽  
pp. 31
Author(s):  
Elena F. Sheka

sp2 Nanocarbons such as fullerenes, carbon nanotubes, and graphene molecules are not only open-shell species, but spatially extended, due to which their chemistry is quite specific. Cogently revealed dependence of the final products composition on size and shape of the carbons in use as well as on the chemical prehistory is accumulated in a particular property—the stabilization of the species’ radical efficiency, thus providing the matter of stable radicals. If the feature is highly restricted and rarely available in ordinary chemistry, in the case of sp2 nanocarbons it is just an ordinary event providing, say, tons-in-mass stable radicals when either producing such widely used technological products as carbon black or dealing with deposits of natural sp2 carbons such as anthracite, shungite carbon, and other. Suggested in the paper is the consideration of stable radicals of sp2 nanocarbons from the standpoint of spin-delocalized topochemistry. Characterized in terms of the total and atomically partitioned number of effectively unpaired electrons as well as of the distribution of the latter over carbon atoms and described by selectively determined barriers of different reactions exhibiting topological essence of intermolecular interaction, sp2 nanocarbons reveal a peculiar topokinetics that lays the foundation of the stability of their radical properties.


Sign in / Sign up

Export Citation Format

Share Document