Enhanced electrochemical performance of copper oxide nanobeads a potential electrode material for energy storage devices

2020 ◽  
Vol 749 ◽  
pp. 137472
Author(s):  
Sahil Verma ◽  
Megha Goyal ◽  
Shubham Kumar ◽  
S. Vadivel ◽  
Bappi Paul
2019 ◽  
Vol 7 (2) ◽  
pp. 520-530 ◽  
Author(s):  
Qiulong Li ◽  
Qichong Zhang ◽  
Chenglong Liu ◽  
Juan Sun ◽  
Jiabin Guo ◽  
...  

The fiber-shaped Ni–Fe battery takes advantage of high capacity of hierarchical CoP@Ni(OH)2 NWAs/CNTF core–shell heterostructure and spindle-like α-Fe2O3/CNTF electrodes to yield outstanding electrochemical performance, demonstrating great potential for next-generation portable wearable energy storage devices.


2020 ◽  
Vol 11 ◽  
pp. 662-670
Author(s):  
Matangi Sricharan ◽  
Bikesh Gupta ◽  
Sreejesh Moolayadukkam ◽  
H S S Ramakrishna Matte

MoO3 is a versatile two-dimensional transition metal oxide having applications in areas such as energy storage devices, electronic devices and catalysis. To efficiently utilize the properties of MoO3 arising from its two-dimensional nature exfoliation is necessary. In this work, the exfoliation of MoO3 is carried out in 2-butanone for the first time. The achieved concentration of the dispersion is about 0.57 mg·mL−1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly, the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50 mV·s−1.


2021 ◽  
Vol 9 (36) ◽  
pp. 20356-20361
Author(s):  
Muhammad Boota ◽  
Euiyeon Jung ◽  
Rajeev Ahuja ◽  
Tanveer Hussain

Unlike conventional additives, the use of MXene as a binder improves the electrochemical performance of conducting polymers. The approach is extendable to a large family of poorly conducting organic materials for sustainable energy storage devices.


2021 ◽  
Author(s):  
S. Rajkumar ◽  
S Gowri ◽  
S Dhineshkumar ◽  
Princy Merlin Johnson ◽  
Anandaraj Sathiyan

With the fast exhaustion of fossil fuels, the need for new energy storage materials to meet the world's massive energy demand has inclined tremendously. Inorganic components with conducting polymer based...


RSC Advances ◽  
2017 ◽  
Vol 7 (89) ◽  
pp. 56752-56759 ◽  
Author(s):  
S. H. Yoon ◽  
Y. J. Park

A PEDOT microflower/graphene composite was introduced as a potential electrode material for Li–O2batteries with enhanced electrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document