A chimera encoding the fusion of an acetylcholine-binding protein to an ion channel is stabilized in a state close to the desensitized form of ligand-gated ion channels

2005 ◽  
Vol 328 (3) ◽  
pp. 223-234 ◽  
Author(s):  
Thomas Grutter ◽  
Lia Prado de Carvalho ◽  
Virginie Dufresne ◽  
Antoine Taly ◽  
Markus Fischer ◽  
...  
Author(s):  
Makoto Ihara

Abstract The Cys-loop superfamily of ligand-gated ion channels (Cys-loop receptors) is one of the most ubiquitous ion channel families in vertebrates and invertebrates. Despite their ubiquity, they are targeted by several classes of pesticides, including neonicotinoids, phenylpyrazols, and macrolides such as ivermectins. The current commercialized compounds have high target site selectivity, which contributes to the safety of insecticide use. Structural analyses have accelerated progress in this field; notably, the X-ray crystal structures of acetylcholine binding protein and glutamate-gated Cl channels revealed the details of the molecular interactions between insecticides and their targets. Recently, the functional expression of the insect nicotinic acetylcholine receptor (nAChR) has been described, and detailed evaluations using the insect nAChR have emerged. This review discusses the basic concepts and the current insights into the molecular mechanisms of neuroactive insecticides targeting the ligand-gated ion channels, particularly Cys-loop receptors, and presents insights into target-based selectivity, resistance, and future drug design.


2004 ◽  
Vol 32 (3) ◽  
pp. 540-546 ◽  
Author(s):  
T.L. Kash ◽  
J.R. Trudell ◽  
N.L. Harrison

Ligand-gated ion channels function as rapid signal transducers, converting chemical signals (in the form of neurotransmitters) into electrical signals in the postsynaptic neuron. This is achieved by the recognition of neurotransmitter at its specific-binding sites, which then triggers the opening of an ion channel (‘gating’). For this to occur rapidly (<1 ms), there must be an efficient coupling between the agonist-binding site and the gate, located more than 30 Å (1 Å=0.1 nm) away. Whereas a great deal of progress has been made in elucidating the structure and function of both the agonist-binding site and the ion permeation pathway in ligand-gated ion channels, our knowledge of the coupling mechanism between these domains has been limited. In this review, we summarize recent studies of the agonist-binding site and the ion channel in the γ-aminobutyric acid type A receptor, and discuss those structural elements that may mediate coupling between them. We will also consider some possible molecular mechanisms of receptor activation.


2005 ◽  
Vol 85 (3) ◽  
pp. 883-941 ◽  
Author(s):  
William J. Moody ◽  
Martha M. Bosma

At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+ influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.


Plant Biology ◽  
2010 ◽  
Vol 12 ◽  
pp. 80-93 ◽  
Author(s):  
P. Dietrich ◽  
U. Anschütz ◽  
A. Kugler ◽  
D. Becker

2021 ◽  
Vol 125 (4) ◽  
pp. 981-994
Author(s):  
Shanlin Rao ◽  
Gianni Klesse ◽  
Charlotte I. Lynch ◽  
Stephen J. Tucker ◽  
Mark S. P. Sansom

Sign in / Sign up

Export Citation Format

Share Document