scholarly journals Structure-guided machine learning prediction of drug resistance mutations in Abelson 1 kinase

Author(s):  
Yunzhuo Zhou ◽  
Stephanie Portelli ◽  
Megan Pat ◽  
Carlos H.M. Rodrigues ◽  
Thanh-Binh Nguyen ◽  
...  
Author(s):  
Dingchen Li ◽  
Yaru Wang ◽  
Wenjuan Hu ◽  
Fangyan Chen ◽  
Jingya Zhao ◽  
...  

Candida auris (C. auris) is an emerging fungus associated with high morbidity. It has a unique transmission ability and is often resistant to multiple drugs. In this study, we evaluated the ability of different machine learning models to classify the drug resistance and predicted and ranked the drug resistance mutations of C. auris. Two C. auris strains were obtained. Combined with other 356 strains collected from the European Bioinformatics Institute (EBI) databases, the whole genome sequencing (WGS) data were analyzed by bioinformatics. Machine learning classifiers were used to build drug resistance models, which were evaluated and compared by various evaluation methods based on AUC value. Briefly, two strains were assigned to Clade III in the phylogenetic tree, which was consistent with previous studies; nevertheless, the phylogenetic tree was not completely consistent with the conclusion of clustering according to the geographical location discovered earlier. The clustering results of C. auris were related to its drug resistance. The resistance genes of C. auris were not under additional strong selection pressure, and the performance of different models varied greatly for different drugs. For drugs such as azoles and echinocandins, the models performed relatively well. In addition, two machine learning algorithms, based on the balanced test and imbalanced test, were designed and evaluated; for most drugs, the evaluation results on the balanced test set were better than on the imbalanced test set. The mutations strongly be associated with drug resistance of C. auris were predicted and ranked by Recursive Feature Elimination with Cross-Validation (RFECV) combined with a machine learning classifier. In addition to known drug resistance mutations, some new resistance mutations were predicted, such as Y501H and I466M mutation in the ERG11 gene and R278H mutation in the ERG10 gene, which may be associated with fluconazole (FCZ), micafungin (MCF), and amphotericin B (AmB) resistance, respectively; these mutations were in the “hot spot” regions of the ergosterol pathway. To sum up, this study suggested that machine learning classifiers are a useful and cost-effective method to identify fungal drug resistance-related mutations, which is of great significance for the research on the resistance mechanism of C. auris.


2021 ◽  
Author(s):  
Luc Blassel ◽  
Anna Tostevin ◽  
Christian Julian Villabona-Arenas ◽  
Martine Peeters ◽  
Stéphane Hué ◽  
...  

AbstractDrug resistance mutations (DRMs) appear in HIV under treatment pressure. DRMs are commonly transmitted to naive patients. The standard approach to reveal new DRMs is to test for significant frequency differences of mutations between treated and naive patients. However, we then consider each mutation individually and cannot hope to study interactions between several mutations. Here, we aim to leverage the ever-growing quantity of high-quality sequence data and machine learning methods to study such interactions (i.e. epistasis), as well as try to find new DRMs.We trained classifiers to discriminate between Reverse Transcriptase Inhibitor (RTI)-experienced and RTI-naive samples on a large HIV-1 reverse transcriptase (RT) sequence dataset from the UK (n ≈ 55, 000), using all observed mutations as binary representation features. To assess the robustness of our findings, our classifiers were evaluated on independent data sets, both from the UK and Africa. Important representation features for each classifier were then extracted as potential DRMs. To find novel DRMs, we repeated this process by removing either features or samples associated to known DRMs.When keeping all known resistance signal, we detected sufficiently prevalent known DRMs, thus validating the approach. When removing features corresponding to known DRMs, our classifiers retained some prediction accuracy, and six new mutations significantly associated with resistance were identified. These six mutations have a low genetic barrier, are correlated to known DRMs, and are spatially close to either the RT active site or the regulatory binding pocket. When removing both known DRM features and sequences containing at least one known DRM, our classifiers lose all prediction accuracy. These results likely indicate that all mutations directly conferring resistance have been found, and that our newly discovered DRMs are accessory or compensatory mutations. Moreover, we did not find any significant signal of epistasis, beyond the standard resistance scheme associating major DRMs to auxiliary mutations.Author summaryAlmost all drugs to treat HIV target the Reverse Transcriptase (RT) and Drug resistance mutations (DRMs) appear in HIV under treatment pressure. Resistant strains can be transmitted and limit treatment options at the population level. Classically, multiple statistical testing is used to find DRMs, by comparing virus sequences of treated and naive populations. However, with this method, each mutation is considered individually and we cannot hope to reveal any interaction (epistasis) between them. Here, we used machine learning to discover new DRMs and study potential epistasis effects. We applied this approach to a very large UK dataset comprising ≈ 55, 000 RT sequences. Results robustness was checked on different UK and African datasets.Six new mutations associated to resistance were found. All six have a low genetic barrier and show high correlations with known DRMs. Moreover, all these mutations are close to either the active site or the regulatory binding pocket of RT. Thus, they are good candidates for further wet experiments to establish their role in drug resistance. Importantly, our results indicate that epistasis seems to be limited to the classical scheme where primary DRMs confer resistance and associated mutations modulate the strength of the resistance and/or compensate for the fitness cost induced by DRMs.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 264
Author(s):  
Miaomiao Li ◽  
Shujia Liang ◽  
Chao Zhou ◽  
Min Chen ◽  
Shu Liang ◽  
...  

Patients with antiretroviral therapy interruption have a high risk of virological failure when re-initiating antiretroviral therapy (ART), especially those with HIV drug resistance. Next-generation sequencing may provide close scrutiny on their minority drug resistance variant. A cross-sectional study was conducted in patients with ART interruption in five regions in China in 2016. Through Sanger and next-generation sequencing in parallel, HIV drug resistance was genotyped on their plasma samples. Rates of HIV drug resistance were compared by the McNemar tests. In total, 174 patients were included in this study, with a median 12 (interquartile range (IQR), 6–24) months of ART interruption. Most (86.2%) of them had received efavirenz (EFV)/nevirapine (NVP)-based first-line therapy for a median 16 (IQR, 7–26) months before ART interruption. Sixty-one (35.1%) patients had CRF07_BC HIV-1 strains, 58 (33.3%) CRF08_BC and 35 (20.1%) CRF01_AE. Thirty-four (19.5%) of the 174 patients were detected to harbor HIV drug-resistant variants on Sanger sequencing. Thirty-six (20.7%), 37 (21.3%), 42 (24.1%), 79 (45.4%) and 139 (79.9) patients were identified to have HIV drug resistance by next-generation sequencing at 20% (v.s. Sanger, p = 0.317), 10% (v.s. Sanger, p = 0.180), 5% (v.s. Sanger, p = 0.011), 2% (v.s. Sanger, p < 0.001) and 1% (v.s. Sanger, p < 0.001) of detection thresholds, respectively. K65R was the most common minority mutation, of 95.1% (58/61) and 93.1% (54/58) in CRF07_BC and CRF08_BC, respectively, when compared with 5.7% (2/35) in CRF01_AE (p < 0.001). In 49 patients that followed-up a median 10 months later, HIV drug resistance mutations at >20% frequency such as K103N, M184VI and P225H still existed, but with decreased frequencies. The prevalence of HIV drug resistance in ART interruption was higher than 15% in the survey. Next-generation sequencing was able to detect more minority drug resistance variants than Sanger. There was a sharp increase in minority drug resistance variants when the detection threshold was below 5%.


2021 ◽  
Vol 22 (10) ◽  
pp. 5304
Author(s):  
Ana Santos-Pereira ◽  
Vera Triunfante ◽  
Pedro M. M. Araújo ◽  
Joana Martins ◽  
Helena Soares ◽  
...  

The success of antiretroviral treatment (ART) is threatened by the emergence of drug resistance mutations (DRM). Since Brazil presents the largest number of people living with HIV (PLWH) in South America we aimed at understanding the dynamics of DRM in this country. We analyzed a total of 20,226 HIV-1 sequences collected from PLWH undergoing ART between 2008–2017. Results show a mild decline of DRM over the years but an increase of the K65R reverse transcriptase mutation from 2.23% to 12.11%. This increase gradually occurred following alterations in the ART regimens replacing zidovudine (AZT) with tenofovir (TDF). PLWH harboring the K65R had significantly higher viral loads than those without this mutation (p < 0.001). Among the two most prevalent HIV-1 subtypes (B and C) there was a significant (p < 0.001) association of K65R with subtype C (11.26%) when compared with subtype B (9.27%). Nonetheless, evidence for K65R transmission in Brazil was found both for C and B subtypes. Additionally, artificial neural network-based immunoinformatic predictions suggest that K65R could enhance viral recognition by HLA-B27 that has relatively low prevalence in the Brazilian population. Overall, the results suggest that tenofovir-based regimens need to be carefully monitored particularly in settings with subtype C and specific HLA profiles.


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223210
Author(s):  
Giselle de Faria Romero Soldi ◽  
Isadora Coutinho Ribeiro ◽  
Cintia Mayumi Ahagon ◽  
Luana Portes Ozório Coelho ◽  
Gabriela Bastos Cabral ◽  
...  

2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Tomohiro Kotaki ◽  
Siti Qamariyah Khairunisa ◽  
Adiana Mutamsari Witaningrum ◽  
Muhammad Qushai Yunifiar M ◽  
Septhia Dwi Sukartiningrum ◽  
...  

Author(s):  
Flávia Jacqueline Almeida ◽  
Rosangela Rodrigues ◽  
Mayra Simioni Zaparoli ◽  
Eitan Naaman Berezin ◽  
Marco Aurélio Palazzi Sáfadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document