Filtering error estimates and order of accuracy via the Peano Kernel Theorem

2011 ◽  
Vol 33 (2) ◽  
pp. 122-127 ◽  
Author(s):  
Jerome Blair
2016 ◽  
Vol 433 (1) ◽  
pp. 622-641
Author(s):  
Jerome Blair ◽  
Aaron Luttman ◽  
Eric Machorro

2020 ◽  
Vol 23 (1-4) ◽  
Author(s):  
Martin J. Gander ◽  
Thibaut Lunet

AbstractWe develop new error estimates for the one-dimensional advection equation, considering general space-time discretization schemes based on Runge–Kutta methods and finite difference discretizations. We then derive conditions on the number of points per wavelength for a given error tolerance from these new estimates. Our analysis also shows the existence of synergistic space-time discretization methods that permit to gain one order of accuracy at a given CFL number. Our new error estimates can be used to analyze the choice of space-time discretizations considered when testing Parallel-in-Time methods.


1978 ◽  
Vol 48 ◽  
pp. 31-35
Author(s):  
R. B. Hanson

Several outstanding problems affecting the existing parallaxes should be resolved to form a coherent system for the new General Catalogue proposed by van Altena, as well as to improve luminosity calibrations and other parallax applications. Lutz has reviewed several of these problems, such as: (A) systematic differences between observatories, (B) external error estimates, (C) the absolute zero point, and (D) systematic observational effects (in right ascension, declination, apparent magnitude, etc.). Here we explore the use of cluster and spectroscopic parallaxes, and the distributions of observed parallaxes, to bring new evidence to bear on these classic problems. Several preliminary results have been obtained.


2007 ◽  
Vol 5 ◽  
pp. 273-278
Author(s):  
V.Yu Liapidevskii

Nonequilibrium flows of an inhomogeneous liquid in channels and pipes are considered in the long-wave approximation. Nonlinear dispersion hyperbolic flow models are derived allowing taking into account the influence of internal inertia during the relative motion of phases upon the structure of nonlinear wave fronts. The asymptotic derivation of dispersion hyperbolic models is shown on the example of classical Boussinesq equations. It is shown that the hyperbolic approximation of the equations has the same order of accuracy as the primary model.


Sign in / Sign up

Export Citation Format

Share Document