scholarly journals Natural gas vehicles in heavy-duty transportation – A political-economic analysis for Brazil

Author(s):  
Pedro Gerber Machado ◽  
Eduardo Naoki Akiyoshi Ichige ◽  
Karina Ninni Ramos ◽  
Dominique Mouette
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Da Pan ◽  
Lei Tao ◽  
Kang Sun ◽  
Levi M. Golston ◽  
David J. Miller ◽  
...  

Abstract Natural gas vehicles (NGVs) have been promoted in China to mitigate air pollution, yet our measurements and analyses show that NGV growth in China may have significant negative impacts on climate change. We conducted real-world vehicle emission measurements in China and found high methane emissions from heavy-duty NGVs (90% higher than current emission limits). These emissions have been ignored in previous emission estimates, leading to biased results. Applying our observations to life-cycle analyses, we found that switching to NGVs from conventional vehicles in China has led to a net increase in greenhouse gas (GHG) emissions since 2000. With scenario analyses, we also show that the next decade will be critical for China to reverse the trend with the upcoming China VI standard for heavy-duty vehicles. Implementing and enforcing the China VI standard is challenging, and the method demonstrated here can provide critical information regarding the fleet-level CH4 emissions from NGVs.


2020 ◽  
pp. 1-41
Author(s):  
Wahiba Yaïci ◽  
Hajo Ribberink

Abstract Concerns about environmental degradation and finite natural resources necessitate cleaner sources of energy for use in the transportation sector. In Canada, natural gas (NG) is currently being appraised as a potential alternative fuel for use in vehicles for both medium and heavy-duty use due to its relatively lower costs compared to that of conventional fuels. The idea of compressed natural gas vehicles (CNGVs) is being mooted as inexpensive for fleet owners and especially because it will potentially significantly reduce harmful emissions into the environment. A short feasibility study was conducted to ascertain the potential for reduced emissions and savings opportunities presented by CNGVs and renewable NGVs (RNGVs) in both medium and heavy-duty vehicles. The study which is discussed in the present paper was carried out on long-haul trucking and refuse trucks respectively. Emphasis was laid on individual vehicle operating economics and emissions reduction, and the identification of practical considerations for both the individual application and CNGVs/RNGVs as a whole. A financial analysis of the annual cost savings that is achievable when an individual diesel vehicle is replaced with a CNG vehicle was also presented. This paper drew substantial references from published case studies for relevant data on maintenance costs, fuel economy, range, and annual distance traveled. It relied on a summary report from Argonne National Laboratory's GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) [18] for its discussion on relative fuel efficiency penalties for heavy-duty CNGVs. The fuel cost figures were mostly drawn from motor fuel data of the Ontario Ministry of Transportation, since the Ministry is one of the few available sources of compressed natural gas fuel prices. Finally, the GHGenius life-cycle analysis tool [19] was employed to determine fuel-cycle emissions in Canada for comparison purposes. The study produced remarkable findings. Results showed that compared to diesel-fuelled vehicles, emissions in CNG heavy-and-medium-duty vehicles reduced by up to 8.7% (for well-to-wheels) and 11.5% (for pump-to-wheels) respectively. Overall, the most beneficial application appeared to be long-haul trucking based on the long distances covered and higher fuel economy achieved (derived from economies of scale), while refuse trucks appeared to have relatively marginal annual savings. However, these annual savings are actually a conservative estimate, which will ultimately be determined by a number of factors that are likely to be predisposed in favour of NG vehicles. Significantly, the prospect of using RNG as fuel was found to be a factor for improving the value proposition of refuse trucks in particular, certainly from an emissions standpoint with a reduction of up to 100%, but speculatively from operational savings as well.


Author(s):  
Wahiba Yaïci ◽  
Hajo Ribberink

Abstract Concerns about environmental degradation and finite natural resources necessitate cleaner sources of energy for use in the transportation sector. In Canada, natural gas is currently being appraised as a potential alternative fuel for use in vehicles for both medium and heavy-duty use due to its relatively lower costs compared to that of conventional fuels. The idea of compressed natural gas vehicles (CNGVs) is being mooted as inexpensive for fleet owners and especially because it will potentially significantly reduce harmful emissions into the environment. A short feasibility study was conducted to ascertain the potential for reduced emissions and savings opportunities presented by CNGVs in both medium and heavy-duty vehicles. The study which is discussed in the present paper was carried out on long-haul trucking and refuse trucks respectively. Emphasis was laid on individual vehicle operating economics and emissions reduction, and the identification of practical considerations for both the individual application and CNGVs as a whole. A financial analysis of the annual cost savings that is achievable when an individual diesel vehicle is replaced with a CNG vehicle was also presented. This paper drew substantial references from published case studies for relevant data on maintenance costs, fuel economy, range, and annual distance travelled. It relied on a summary report from Argonne National Laboratory’s GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) [1] for its discussion on relative fuel efficiency penalties for heavy-duty CNGVs. The fuel cost figures were mostly drawn from motor fuel data of the Ontario Ministry of Transportation, since the Ministry is one of the few available sources of compressed natural gas fuel prices. Finally, the GHGenius life-cycle analysis tool [2] was employed to determine fuel-cycle emissions in Canada for comparison purposes. The study produced remarkable findings. Results showed that compared to diesel-fuelled vehicles, emissions in CNG heavy-and-medium-duty vehicles reduced by up to 8.7% (for well-to-pump) and 11.5% (for pump-to-wheels) respectively. Overall, the most beneficial use/application appeared to be long-haul trucking based on the long distances covered and higher fuel economy achieved (derived from economies of scale), while refuse trucks appeared to have relatively marginal annual savings. However, these annual savings are actually a conservative estimate which will ultimately be modified/determined by a number of factors that are likely to be predisposed in favour of natural gas vehicles. Significantly, the prospect of using renewable natural gas as fuel was found to be a factor for improving the value proposition of refuse trucks in particular, certainly from an emissions standpoint with a reduction of up to 100%, but speculatively from operational savings as well.


2000 ◽  
Vol 50 (11) ◽  
pp. 1992-1998 ◽  
Author(s):  
Robert L. McCormick ◽  
Michael S. Graboski ◽  
Teresa L. Alleman ◽  
Janet Yanowitz

Energy Policy ◽  
2018 ◽  
Vol 122 ◽  
pp. 253-259 ◽  
Author(s):  
Arvind Thiruvengadam ◽  
Marc Besch ◽  
Vishnu Padmanaban ◽  
Saroj Pradhan ◽  
Berk Demirgok

Sign in / Sign up

Export Citation Format

Share Document