Idle Emissions from Heavy-Duty Diesel and Natural Gas Vehicles at High Altitude

2000 ◽  
Vol 50 (11) ◽  
pp. 1992-1998 ◽  
Author(s):  
Robert L. McCormick ◽  
Michael S. Graboski ◽  
Teresa L. Alleman ◽  
Janet Yanowitz
Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Increased utilization of natural-gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduce greenhouse-gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOx, CO, and HC emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing, engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late burn (including double-peak heat release rate) was observed for advanced spark timing. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3 %), moderate rate of pressure rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Da Pan ◽  
Lei Tao ◽  
Kang Sun ◽  
Levi M. Golston ◽  
David J. Miller ◽  
...  

Abstract Natural gas vehicles (NGVs) have been promoted in China to mitigate air pollution, yet our measurements and analyses show that NGV growth in China may have significant negative impacts on climate change. We conducted real-world vehicle emission measurements in China and found high methane emissions from heavy-duty NGVs (90% higher than current emission limits). These emissions have been ignored in previous emission estimates, leading to biased results. Applying our observations to life-cycle analyses, we found that switching to NGVs from conventional vehicles in China has led to a net increase in greenhouse gas (GHG) emissions since 2000. With scenario analyses, we also show that the next decade will be critical for China to reverse the trend with the upcoming China VI standard for heavy-duty vehicles. Implementing and enforcing the China VI standard is challenging, and the method demonstrated here can provide critical information regarding the fleet-level CH4 emissions from NGVs.


Author(s):  
Jinlong Liu ◽  
Cosmin Emil Dumitrescu

Increased utilization of natural gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduced greenhouse gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOX, CO, and hydrocarbon (HC) emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing (ST), engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late-burn (including double-peak heat release rate) was observed for advanced ST. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3%), moderate rate of pressure-rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


2015 ◽  
Vol 49 (8) ◽  
pp. 5236-5244 ◽  
Author(s):  
Arvind Thiruvengadam ◽  
Marc C. Besch ◽  
Pragalath Thiruvengadam ◽  
Saroj Pradhan ◽  
Daniel Carder ◽  
...  

2020 ◽  
pp. 1-41
Author(s):  
Wahiba Yaïci ◽  
Hajo Ribberink

Abstract Concerns about environmental degradation and finite natural resources necessitate cleaner sources of energy for use in the transportation sector. In Canada, natural gas (NG) is currently being appraised as a potential alternative fuel for use in vehicles for both medium and heavy-duty use due to its relatively lower costs compared to that of conventional fuels. The idea of compressed natural gas vehicles (CNGVs) is being mooted as inexpensive for fleet owners and especially because it will potentially significantly reduce harmful emissions into the environment. A short feasibility study was conducted to ascertain the potential for reduced emissions and savings opportunities presented by CNGVs and renewable NGVs (RNGVs) in both medium and heavy-duty vehicles. The study which is discussed in the present paper was carried out on long-haul trucking and refuse trucks respectively. Emphasis was laid on individual vehicle operating economics and emissions reduction, and the identification of practical considerations for both the individual application and CNGVs/RNGVs as a whole. A financial analysis of the annual cost savings that is achievable when an individual diesel vehicle is replaced with a CNG vehicle was also presented. This paper drew substantial references from published case studies for relevant data on maintenance costs, fuel economy, range, and annual distance traveled. It relied on a summary report from Argonne National Laboratory's GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) [18] for its discussion on relative fuel efficiency penalties for heavy-duty CNGVs. The fuel cost figures were mostly drawn from motor fuel data of the Ontario Ministry of Transportation, since the Ministry is one of the few available sources of compressed natural gas fuel prices. Finally, the GHGenius life-cycle analysis tool [19] was employed to determine fuel-cycle emissions in Canada for comparison purposes. The study produced remarkable findings. Results showed that compared to diesel-fuelled vehicles, emissions in CNG heavy-and-medium-duty vehicles reduced by up to 8.7% (for well-to-wheels) and 11.5% (for pump-to-wheels) respectively. Overall, the most beneficial application appeared to be long-haul trucking based on the long distances covered and higher fuel economy achieved (derived from economies of scale), while refuse trucks appeared to have relatively marginal annual savings. However, these annual savings are actually a conservative estimate, which will ultimately be determined by a number of factors that are likely to be predisposed in favour of NG vehicles. Significantly, the prospect of using RNG as fuel was found to be a factor for improving the value proposition of refuse trucks in particular, certainly from an emissions standpoint with a reduction of up to 100%, but speculatively from operational savings as well.


Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu

Abstract Converting existing compression ignition (CI) engines to spark ignition (SI) operation can increase the use of natural gas (NG) in heavy-duty engine applications and reduce the reliance on petroleum fuels. Gas fumigation upstream of the intake manifold and the addition of a spark plug in place of the diesel injector to initiate and control the combustion process is a convenient approach for converting existing diesel engines to dedicated NG operation. Stoichiometric operation and a three-way catalytic converter can help the engine to comply with increasingly strict emission regulations. However, as the CI-to-SI conversion usually maintains the conventional geometry of a CI engine (i.e., maintains the flat cylinder head and the bowl-in piston), the goal of this study was to observe some of the effects that the diesel conversion to stoichiometric NG SI operation will have on the engine’s performance and emissions. Dynamometer tests were performed at a constant engine speed at 1300 rpm but various spark timings. The experimental results for a net indicated mean effective pressure ∼ 6.7 bar showed that ignition timing did not affect the end of combustion due to the slow-burn inside the squish. Moreover, the less-optimal conditions inside the squish led to increased carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. While the combustion event was stable with no signs of knocking at the medium load conditions investigated here, the results suggest that the engine control needs to optimize the mass fraction trapped inside the squish region for a higher efficiency and lower emissions.


Sign in / Sign up

Export Citation Format

Share Document