scholarly journals Methane emissions from natural gas vehicles in China

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Da Pan ◽  
Lei Tao ◽  
Kang Sun ◽  
Levi M. Golston ◽  
David J. Miller ◽  
...  

Abstract Natural gas vehicles (NGVs) have been promoted in China to mitigate air pollution, yet our measurements and analyses show that NGV growth in China may have significant negative impacts on climate change. We conducted real-world vehicle emission measurements in China and found high methane emissions from heavy-duty NGVs (90% higher than current emission limits). These emissions have been ignored in previous emission estimates, leading to biased results. Applying our observations to life-cycle analyses, we found that switching to NGVs from conventional vehicles in China has led to a net increase in greenhouse gas (GHG) emissions since 2000. With scenario analyses, we also show that the next decade will be critical for China to reverse the trend with the upcoming China VI standard for heavy-duty vehicles. Implementing and enforcing the China VI standard is challenging, and the method demonstrated here can provide critical information regarding the fleet-level CH4 emissions from NGVs.

2020 ◽  
Vol 24 (3) ◽  
pp. 80-93
Author(s):  
Aleksey Safronov ◽  
Julia Guzeyeva ◽  
Jevgeniy Begens ◽  
Ansis Mezulis

AbstractThe article describes the technology of the “hydraulic piston”, as well as the studies that confirm the viability of this technology, implemented in various devices, designed to compress natural gas (CNG) and biomethane (bio-CNG), to accumulate CNG and bio-CNG, to deliver bio-CNG from the production site to the point of its injection into the natural gas network or to the vehicle fuelling stations to fill the Natural Gas Vehicles (NGV). The article presents prototypes of personal fuelling devices and mobile fuelling systems developed by Hygen Ltd. (Hygen), thereby showing the potential of the technology to contribute in the deployment of alternative fuel infrastructure and into the global GHG emissions reduction, mainly in the transport sector.


2020 ◽  
pp. 1-41
Author(s):  
Wahiba Yaïci ◽  
Hajo Ribberink

Abstract Concerns about environmental degradation and finite natural resources necessitate cleaner sources of energy for use in the transportation sector. In Canada, natural gas (NG) is currently being appraised as a potential alternative fuel for use in vehicles for both medium and heavy-duty use due to its relatively lower costs compared to that of conventional fuels. The idea of compressed natural gas vehicles (CNGVs) is being mooted as inexpensive for fleet owners and especially because it will potentially significantly reduce harmful emissions into the environment. A short feasibility study was conducted to ascertain the potential for reduced emissions and savings opportunities presented by CNGVs and renewable NGVs (RNGVs) in both medium and heavy-duty vehicles. The study which is discussed in the present paper was carried out on long-haul trucking and refuse trucks respectively. Emphasis was laid on individual vehicle operating economics and emissions reduction, and the identification of practical considerations for both the individual application and CNGVs/RNGVs as a whole. A financial analysis of the annual cost savings that is achievable when an individual diesel vehicle is replaced with a CNG vehicle was also presented. This paper drew substantial references from published case studies for relevant data on maintenance costs, fuel economy, range, and annual distance traveled. It relied on a summary report from Argonne National Laboratory's GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) [18] for its discussion on relative fuel efficiency penalties for heavy-duty CNGVs. The fuel cost figures were mostly drawn from motor fuel data of the Ontario Ministry of Transportation, since the Ministry is one of the few available sources of compressed natural gas fuel prices. Finally, the GHGenius life-cycle analysis tool [19] was employed to determine fuel-cycle emissions in Canada for comparison purposes. The study produced remarkable findings. Results showed that compared to diesel-fuelled vehicles, emissions in CNG heavy-and-medium-duty vehicles reduced by up to 8.7% (for well-to-wheels) and 11.5% (for pump-to-wheels) respectively. Overall, the most beneficial application appeared to be long-haul trucking based on the long distances covered and higher fuel economy achieved (derived from economies of scale), while refuse trucks appeared to have relatively marginal annual savings. However, these annual savings are actually a conservative estimate, which will ultimately be determined by a number of factors that are likely to be predisposed in favour of NG vehicles. Significantly, the prospect of using RNG as fuel was found to be a factor for improving the value proposition of refuse trucks in particular, certainly from an emissions standpoint with a reduction of up to 100%, but speculatively from operational savings as well.


2015 ◽  
Vol 49 (11) ◽  
pp. 6402-6410 ◽  
Author(s):  
Jonathan R. Camuzeaux ◽  
Ramón A. Alvarez ◽  
Susanne A. Brooks ◽  
Joshua B. Browne ◽  
Thomas Sterner

Author(s):  
Zhihao Wang ◽  
Amir Sharafian ◽  
Walter Mérida

Abstract Methane is the primary component of liquefied natural gas (LNG) and a potent greenhouse gas (GHG). The undesired methane emissions across the natural gas supply chain has been proven to worsen the lifecycle GHG emissions from the transportation sector compared with diesel. Therefore, having accurate fast-response models to predict the performance of natural gas infrastructure, such as LNG storage facilities, becomes crucial to minimize methane emissions. In this study, a novel non-equilibrium multi-species thermodynamic model based on the resistance-capacitance network is developed to assess the thermal performance of LNG storage tanks. The accuracy of the non-equilibrium model is validated against the experimental data of a storage tank under dynamic hot gas injection. Then, the model is employed to analyze the performance of two identical vertical and horizontal storage tanks in a refueling station under self-pressurization condition. The results show that the pressure rise in the stationary vertical and horizontal tanks is similar. However, the temperature gradient between the vapor phase and LNG in the horizontal tank is less than that in the vertical tank due to the larger vapor-liquid interface. This feature allows the horizontal tank to reduce the tank pressure faster than the vertical tank under sudden pressure increase.


2019 ◽  
Author(s):  
Hadyan Ramadhan ◽  
Amir Sharafian ◽  
Walter Mérida

Abstract Liquefied natural gas (LNG) has been considered as a substitute for diesel and heavy-fuel oil in heavy-duty trucks and marine vessels, respectively. However, the widespread adoption of LNG as a fuel is hampered by its uncertain potential to reduce greenhouse gas (GHG) emissions in comparison with diesel and heavy-fuel oil from the lifecycle standpoint. Methane is the main component of LNG and a potent GHG. In this study, the design and validation of a high-volume sampling (HVS) system are proposed to accurately measure methane emissions from the LNG fuel infrastructure, including experiment designs for calibration and system validation, and uncertainty analysis. The accuracy of HVS measurements is tested under controlled environment. The results indicate that the HVS system can quantify leak rates between 108 and 3,254 g/h with a maximum uncertainty of 10% as long as the distance between the leak source and the HVS system sampling port is maintained at less than 50 mm. In future work, the HVS system will be used to characterize methane emissions from LNG offloading or bunkering process, and update the GHG inventories in North America to fill the knowledge gap in the complete lifecycle analysis of LNG fuel for heavy-duty vehicles and marine vessels.


2017 ◽  
Vol 67 (12) ◽  
pp. 1328-1341 ◽  
Author(s):  
Nigel N. Clark ◽  
Derek R. Johnson ◽  
David L. McKain ◽  
W. Scott Wayne ◽  
Hailin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document