scholarly journals Molecular Characterization of the Long-Day Response in the Soay Sheep, a Seasonal Mammal

2004 ◽  
Vol 14 (4) ◽  
pp. 334-339 ◽  
Author(s):  
David G Hazlerigg ◽  
Håkan Andersson ◽  
Jonathan D Johnston ◽  
Gerald Lincoln
HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1105D-1105
Author(s):  
Philip Stewart ◽  
Daniel Sargent ◽  
Thomas Davis ◽  
Kevin Folta

The molecular mechanisms governing photoperiodic flowering has been well defined in the model systems of Arabidopsis thaliana(a facultative long-day plant) and rice (a short-day plant). Photoperiodic flowering control is of great interest to strawberry (Fragaria×ananassa) breeders and growers, and the genetics of photoperiodic flowering have been well studied, indicating that response to day-length is regulated by a small number of genetic loci. Cultivated strawberry is octoploid, so identification of these loci through forward genetic analyses is not practical. Since the componentry of the flowering response is generally conserved between monocots and dicots, we may assume that similar, if not identical, systems are functioning in strawberry as well. The goal of this work is to understand how cultivars likely containing identical photoperiod-sensing components are differentially sensitive to daylength. The expression patterns of genes relevant to the floraltransition were assessed under specific photoperiod conditions to assess similarities and/or differences to the model systems.


2006 ◽  
Vol 175 (4S) ◽  
pp. 467-467
Author(s):  
Victor K. Lin ◽  
Shih-Ya Wang ◽  
Claus G. Roehrbom

2012 ◽  
Vol 224 (03) ◽  
Author(s):  
A Streltsov ◽  
S Emmrich ◽  
F Engeland ◽  
JH Klusmann

2018 ◽  
Author(s):  
MY Deng ◽  
D Sturm ◽  
E Pfaff ◽  
GP Balasubrama ◽  
J Schittenhelm ◽  
...  

2006 ◽  
Vol 37 (06) ◽  
Author(s):  
L Schlotawa ◽  
T Dierks ◽  
K von Figura ◽  
J Gärtner

2020 ◽  
Vol 141 ◽  
pp. 39-46
Author(s):  
MD Dorjievna Batueva ◽  
X Pan ◽  
J Zhang ◽  
X Liu ◽  
W Wei ◽  
...  

In the present study, we provide supplementary data for Myxidium cf. rhodei Léger, 1905 based on morphological, histological and molecular characterization. M. cf. rhodei was observed in the kidneys of 918 out of 942 (97%) roach Rutilus rutilus (Linnaeus, 1758). Myxospores of M. cf. rhodei were fusiform with pointed ends, measuring 12.7 ± 0.1 SD (11.8-13.4) µm in length and 4.6 ± 0.1 (3.8-5.4) µm in width. Two similar pear-shaped polar capsules were positioned at either ends of the longitudinal axis of the myxospore: each of these capsules measured 4.0 ± 0.1 (3.1-4.7) µm in length and 2.8 ± 0.1 (2.0-4.0) µm in width. Polar filaments were coiled into 4 to 5 turns. Approximately 18-20 longitudinal straight ridges were observed on the myxospore surface. The suture line was straight and distinctive, running near the middle of the valves. Histologically, the plasmodia of the present species were found in the Bowman’s capsules, and rarely in the interstitium of the host. Phylogenetic analysis revealed that M. cf. rhodei was sister to M. anatidum in the Myxidium clade including most Myxidium species from freshwater hosts.


Sign in / Sign up

Export Citation Format

Share Document