scholarly journals The Drosophila Fragile X Mental Retardation Protein Controls Actin Dynamics by Directly Regulating Profilin in the Brain

2005 ◽  
Vol 15 (12) ◽  
pp. 1156-1163 ◽  
Author(s):  
Simon P. Reeve ◽  
Laura Bassetto ◽  
Ginka K. Genova ◽  
Yelena Kleyner ◽  
Maarten Leyssen ◽  
...  
2020 ◽  
Vol 12 (4) ◽  
pp. 903-916 ◽  
Author(s):  
Cassandra Malecki ◽  
Brett D. Hambly ◽  
Richmond W. Jeremy ◽  
Elizabeth N. Robertson

2005 ◽  
Vol 280 (39) ◽  
pp. 33403-33410 ◽  
Author(s):  
Francesca Zalfa ◽  
Salvatore Adinolfi ◽  
Ilaria Napoli ◽  
Eva Kühn-Hölsken ◽  
Henning Urlaub ◽  
...  

Author(s):  
Claudia Bagni ◽  
Eric Klann

Chapter 8 discusses how Fragile X syndrome (FXS) is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP is highly expressed in the brain and gonads, the two organs mainly affected in patients with the syndrome. Functionally, FMRP belongs to the family of RNA-binding proteins, shuttling from the nucleus to the cytoplasm, and, as shown for other RNA-binding proteins, forms large messenger ribonucleoparticles.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Phuong Nguyen ◽  
Jong Bok Seo ◽  
Hyo-Min Ahn ◽  
Young Ho Koh

We investigated unknownin vivofunctions of Torsin by usingDrosophilaas a model. Downregulation ofDrosophilaTorsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported inDrosophilaFragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies ofdfmrpnull mutants anddfmrpmutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved.


Sign in / Sign up

Export Citation Format

Share Document