scholarly journals Perturbation-specific responses by two neural circuits generating similar activity patterns

2021 ◽  
Author(s):  
Daniel J. Powell ◽  
Eve Marder ◽  
Michael P. Nusbaum
2021 ◽  
Author(s):  
Michael Deistler ◽  
Jakob H Macke ◽  
Pedro J Goncalves

Neural circuits can produce similar activity patterns from vastly different combinations of channel and synaptic conductances. These conductances are tuned for specific activity patterns but might also reflect additional constraints, such as metabolic cost or robustness to perturbations. How do such constraints influence the range of permissible conductances? Here, we investigate how metabolic cost affects the parameters of neural circuits with similar activity in a model of the pyloric network of the crab Cancer borealis. We use a novel machine learning method to identify a range of network models that can generate activity patterns matching experimental data. We find that neural circuits can consume largely different amounts of energy despite similar circuit activity. We then study how circuit parameters get constrained by minimizing energy consumption and identify circuit parameters that might be subject to metabolic tuning. Finally, we investigate the interaction between metabolic cost and temperature robustness. We show that metabolic cost can vary across temperatures, but that robustness to temperature changes does not necessarily incur an increased metabolic cost. Our analyses show that, despite metabolic efficiency and temperature robustness constraining circuit parameters, neural systems can generate functional, efficient, and robust network activity with widely disparate sets of conductances.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kevin A Bolding ◽  
Shivathmihai Nagappan ◽  
Bao-Xia Han ◽  
Fan Wang ◽  
Kevin M Franks

Pattern completion, or the ability to retrieve stable neural activity patterns from noisy or partial cues, is a fundamental feature of memory. Theoretical studies indicate that recurrently connected auto-associative or discrete attractor networks can perform this process. Although pattern completion and attractor dynamics have been observed in various recurrent neural circuits, the role recurrent circuitry plays in implementing these processes remains unclear. In recordings from head-fixed mice, we found that odor responses in olfactory bulb degrade under ketamine/xylazine anesthesia while responses immediately downstream, in piriform cortex, remain robust. Recurrent connections are required to stabilize cortical odor representations across states. Moreover, piriform odor representations exhibit attractor dynamics, both within and across trials, and these are also abolished when recurrent circuitry is eliminated. Here, we present converging evidence that recurrently-connected piriform populations stabilize sensory representations in response to degraded inputs, consistent with an auto-associative function for piriform cortex supported by recurrent circuitry.


2012 ◽  
Vol 86 (4) ◽  
Author(s):  
Joel N. Tenenbaum ◽  
Shlomo Havlin ◽  
H. Eugene Stanley

e-Neuroforum ◽  
2013 ◽  
Vol 19 (2) ◽  
Author(s):  
F. Helmchen ◽  
M. Hübener

AbstractThe brain’s astounding achievements regard­ing movement control and sensory process­ing are based on complex spatiotemporal ac­tivity patterns in the relevant neuronal net­works. Our understanding of neuronal net­work activity is, however, still poor, not least because of the experimental difficulties in di­rectly observing neural circuits at work in the living brain (in vivo). Over the last decade, new opportunities have emerged-especial­ly utilizing two-photon microscopy-to in­vestigate neuronal networks in action. Cen­tral to this progress was the development of fluorescent proteins that change their emis­sion depending on cell activity, enabling the visualization of dynamic activity patterns in local neuronal populations. Currently, genet­ically encoded calcium indicators, proteins that indicate neuronal activity based on ac­tion potential-evoked calcium influx, are be­ing increasingly used. Long-term expression of these indicators allows repeated moni­toring of the same neurons over weeks and months, such that the stability and plastici­ty of their functional properties can be char­acterized. Furthermore, permanent indicator expression facilitates the correlation of cel­lular activity patterns and behavior in awake animals. Using examples from recent studies of information processing in the mouse neo­cortex, we review in this article these fasci­nating new possibilities and discuss the great potential of the fluorescent proteins to eluci­date the mysteries of neural circuits.


Author(s):  
Pajani Aur�liane ◽  
Kok Peter ◽  
Donner Tobias ◽  
Kouider Sid ◽  
De Lange Floris

1993 ◽  
Vol 69 (5) ◽  
pp. 1725-1735 ◽  
Author(s):  
J. L. Schotland ◽  
W. Z. Rymer

1. We evaluated the hypothesis that the neural control of complex motor behaviors is simplified by building movement sequences from a series of simple neural "building blocks." In particular, we compared two reflex behaviors of the frog, flexion withdrawal and the hindlimb-hindlimb wipe reflex, to determine whether a single neural circuit that coordinates flexion withdrawal is incorporated as the first element in a sequence of neural circuits comprising the wipe. The neural organization of these two reflexes was compared using a quantitative analysis of movement kinematics and muscle activity patterns [electromyograms (EMGs)]. 2. The three-dimensional coordinates of the position of the foot over time and the angular excursion of hip, knee, and ankle joints were recorded using a WATSMART infrared emitter-detector system. These data were quantified using principal-components analysis to provide a measure of the shape (eigenvalues) and orientation (eigen-vector coefficients) of the movement trajectories. The latencies and magnitudes of EMGs of seven muscles acting at the hip, knee, and ankle were analyzed over the interval from EMG onset to movement onset, and EMG magnitudes during the initial flexion of the limb. These variables were compared during flexion withdrawal and the initial flexion movement of the limb during the hindlimb-hindlimb wipe reflex (before the onset of the frequently rhythmic portion when the stimulus is removed) when the two reflexes were elicited from comparable stimulus locations. 3. In both the flexion reflex and the initial movement segment of the wipe reflex, the foot moves along a relatively straight line. However, the foot is directed to a more rostral and lateral position during flexion than during wipe. All three joints flex during flexion withdrawal, whereas during the wipe, the knee and ankle joints flex but the angular excursion of the hip joint may vary. The different orientations of the movement trajectories are associated with EMG patterns that differ in both timing and magnitude between the two reflexes. 4. The differences in the kinematics and EMG patterns of the two reflexes during unrestrained movements make it unlikely that the neural circuit that coordinates flexion withdrawal is incorporated as the first element in the sequence of neural circuits underlying the wipe reflex. 5. Unlike the wipe reflex, during flexion withdrawal there is no apparent constraint on the accuracy of placement at the end of the movement, yet the animals nevertheless achieved consistent final positions of both the foot and of each joint. The implications of these findings with respect to the controlled variables are discussed.


Author(s):  
Ju Lu ◽  
Michelle Tjia ◽  
Brian Mullen ◽  
Bing Cao ◽  
Kacper Lukasiewicz ◽  
...  

AbstractPsychological stress affects a wide spectrum of brain functions and poses risks for many mental disorders. However, effective therapeutics to alleviate or revert its deleterious effects are lacking. A recently synthesized psychedelic analog tabernanthalog (TBG) has demonstrated anti-addictive and antidepressant potential. Whether TBG can rescue stress-induced affective, sensory, and cognitive deficits, and how it may achieve such effects by modulating neural circuits, remain unknown. Here we show that in mice exposed to unpredictable mild stress (UMS), administration of a single dose of TBG decreases their anxiety level and rescues deficits in sensory processing as well as in cognitive flexibility. Post-stress TBG treatment promotes the regrowth of excitatory neuron dendritic spines lost during UMS, decreases the baseline neuronal activity, and enhances whisking-modulation of neuronal activity in the somatosensory cortex. Moreover, calcium imaging in head-fixed mice performing a whisker-dependent texture discrimination task shows that novel textures elicit responses from a greater proportion of neurons in the somatosensory cortex than do familiar textures. Such differential response is diminished by UMS and is restored by TBG. Together, our study reveals the effects of UMS on cortical neuronal circuit activity patterns and demonstrate that TBG combats the detrimental effects of stress by modulating basal and stimulus-dependent neural activity in cortical networks.


Author(s):  
Aaron Kelley ◽  
Andrey Shilnikov

We propose a minimalistic model called the 2θ-burster due to two slow phase characteristics of endogenous bursters, which when coupled in 3-cell neural circuits generate a multiplicity of stable rhythmic outcomes. This model offers the benefits of simplicity for designing larger neural networks along with an acute reduction in the computation cost. We developed a dynamical system framework for explaining the existence and robustness of phase-locked states in activity patterns produced by small rhythmic neural circuits. Several 3-cell configurations, from multifunctional to monostable, are considered to demonstrate the versatility of the proposed approach, allowing the network dynamics to be reduced to the examination of 2D Poincaré return maps for the phase lags between three constituent 2θ-bursters.


Sign in / Sign up

Export Citation Format

Share Document