Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects

Cytokine ◽  
2003 ◽  
Vol 24 (6) ◽  
pp. 254-265 ◽  
Author(s):  
Kevin A. O'Connor ◽  
Michael K. Hansen ◽  
C. Rachal Pugh ◽  
Molly M. Deak ◽  
Joseph C. Biedenkapp ◽  
...  
2019 ◽  
Vol 20 (24) ◽  
pp. 6258 ◽  
Author(s):  
Biscetti ◽  
Rando ◽  
Nardella ◽  
Cecchini ◽  
Pecorini ◽  
...  

Diabetes mellitus (DM) is an endemic disease, with growing health and social costs. The complications of diabetes can affect potentially all parts of the human body, from the heart to the kidneys, peripheral and central nervous system, and the vascular bed. Although many mechanisms have been studied, not all players responsible for these complications have been defined yet. High Mobility Group Box-1 (HMGB1) is a non-histone nuclear protein that has been implicated in many pathological processes, from sepsis to ischemia. The purpose of this review is to take stock of all the most recent data available on the role of HMGB1 in the complications of DM.


2014 ◽  
Vol 83 (4) ◽  
pp. 336-341
Author(s):  
Norbert Wąsik ◽  
Roman Jankowski ◽  
Bartosz Sokół ◽  
Hinna Shahid

High-mobility group box 1 protein (HMGB1) is a multifunctional protein originally identified as a nuclear transcription modifier. Two pathways are leading to HMGB1 release to the extracellular space i.e. active secretion triggered by noxious stimulation and passive leakage due to necrotic membrane damage. Binding with receptors for advanced glycation end products (RAGE) as well as Toll-like receptor 2 (TLR2) and TLR4 leads to nuclear factor ?B (NF-?B) activation and proinflammatory reaction in target cells. Secretion of cytokines, upregulation of adhesion molecules and chemoattraction are triggered by the extracellular HMGB1. Such ubiquitous and numerous protein plays a role in pathogenesis of many common diseases like sepsis, rheumatoid arthritis and pneumonia. Central nervous system (CNS) disorders are also mediated by HMGB1. Multiple studies highlight pivotal role of HMGB1 in acute pathologies of CNS like cerebral ischemia, aneurysmal subarachnoid hemorrhage as well as chronic degenerative disorders such as Alzheimer’s disease and multiple sclerosis. Wide range of HMGB1 antagonists are currently investigated as novel therapeutic agents in sepsis, colitis and stroke. This review article provides basic information about HMGB1 protein and its role in the pathogenesis of CNS diseases.


2017 ◽  
Vol 4 (2) ◽  
pp. 185-218 ◽  
Author(s):  
Seidu A. Richard ◽  
◽  
Wu Min ◽  
Zhaoliang Su ◽  
Hua-Xi Xu ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1778
Author(s):  
Pakhuri Mehta ◽  
Przemysław Miszta ◽  
Sławomir Filipek

The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer’s disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014–2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.


1984 ◽  
Vol 259 (14) ◽  
pp. 8840-8846
Author(s):  
L R Bucci ◽  
W A Brock ◽  
I L Goldknopf ◽  
M L Meistrich

1989 ◽  
Vol 264 (31) ◽  
pp. 18552-18560 ◽  
Author(s):  
N C Thambi ◽  
F Quan ◽  
W J Wolfgang ◽  
A Spiegel ◽  
M Forte

Genetics ◽  
1990 ◽  
Vol 126 (4) ◽  
pp. 1033-1044 ◽  
Author(s):  
T Watanabe ◽  
D R Kankel

Abstract Previous genetic studies have shown that wild-type function of the l(1)ogre (lethal (1) optic ganglion reduced) locus is essential for the generation and/or maintenance of the postembryonic neuroblasts including those from which the optic lobe is descended. In the present study molecular isolation and characterization of the l(1)ogre locus was carried out to study the structure and expression of this gene in order to gain information about the nature of l(1)ogre function and its relevance to the development of the central nervous system. About 70 kilobases (kb) of genomic DNA were isolated that spanned the region where l(1)ogre was known to reside. Southern analysis of a l(1)ogre mutation and subsequent P element-mediated DNA transformation mapped the l(1)ogre+ function within a genomic fragment of 12.5 kb. Northern analyses showed that a 2.9-kb message transcribed from this 12.5-kb region represented l(1)ogre. A 2.15-kb portion of a corresponding cDNA clone was sequenced. An open reading frame (ORF) of 1,086 base paris was found, and a protein sequence of 362 amino acids with one highly hydrophobic segment was deduced from conceptual translation of this ORF.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e63073 ◽  
Author(s):  
Yuki Kuroiwa ◽  
Yoichi Takakusagi ◽  
Tomoe Kusayanagi ◽  
Kouji Kuramochi ◽  
Takahiko Imai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document