scholarly journals Monoaminergic impairment in Down syndrome with Alzheimer's disease compared to early‐onset Alzheimer's disease

Author(s):  
Alain D. Dekker ◽  
Yannick Vermeiren ◽  
Maria Carmona‐Iragui ◽  
Bessy Benejam ◽  
Laura Videla ◽  
...  
2017 ◽  
Vol 137 (7) ◽  
pp. 801-805 ◽  
Author(s):  
Masashi Asai ◽  
Takashi Kawakubo ◽  
Ryotaro Mori ◽  
Nobuhisa Iwata

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Justin L. Tosh ◽  
◽  
Elena R. Rhymes ◽  
Paige Mumford ◽  
Heather T. Whittaker ◽  
...  

AbstractIndividuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early-onset Alzheimer’s disease, in which amyloid-β accumulates in the brain. Amyloid-β is a product of the chromosome 21 gene APP (amyloid precursor protein) and the extra copy or ‘dose’ of APP is thought to be the cause of this early-onset Alzheimer’s disease. However, other chromosome 21 genes likely modulate disease when in three-copies in people with Down syndrome. Here we show that an extra copy of chromosome 21 genes, other than APP, influences APP/Aβ biology. We crossed Down syndrome mouse models with partial trisomies, to an APP transgenic model and found that extra copies of subgroups of chromosome 21 gene(s) modulate amyloid-β aggregation and APP transgene-associated mortality, independently of changing amyloid precursor protein abundance. Thus, genes on chromosome 21, other than APP, likely modulate Alzheimer’s disease in people who have Down syndrome.


2020 ◽  
Author(s):  
Justin L. Tosh ◽  
Ellie Rhymes ◽  
Paige Mumford ◽  
Heather T. Whittaker ◽  
Laura J. Pulford ◽  
...  

AbstractIndividuals who have Down syndrome (caused by trisomy of chromosome 21), have a greatly elevated risk of early-onset Alzheimer’s disease, in which amyloid-β accumulates in the brain. Amyloid-β is a product of the chromosome 21 gene APP (amyloid precursor protein) and the extra copy or ‘dose’ of APP is thought to be the cause of this early-onset Alzheimer’s disease. However, other chromosome 21 genes likely modulate disease when in three-copies in people with Down syndrome. Here we show that an extra copy of chromosome 21 genes, other than APP, influences APP/Aβ biology. We crossed Down syndrome mouse models with partial trisomies, to an APP transgenic model and found that extra copies of subgroups of chromosome 21 gene(s) modulate amyloid-β aggregation and APP transgene-associated mortality, independently of changing amyloid precursor protein abundance. Thus, genes on chromosome 21, other than APP, likely modulate Alzheimer’s disease in people who have Down syndrome.


2014 ◽  
Author(s):  
Joseph P. Barsuglia ◽  
Michelle J. Mather ◽  
Hemali V. Panchal ◽  
Aditi Joshi ◽  
Elvira Jimenez ◽  
...  

2018 ◽  
Author(s):  
Natalia Acosta-Baena ◽  
Carlos Mario Lopera-Gómez ◽  
Mario César Jaramillo-Elorza ◽  
Margarita Giraldo-Chica ◽  
Mauricio Arcos-Burgos ◽  
...  

2020 ◽  
Vol 17 (5) ◽  
pp. 438-445
Author(s):  
Van Giau Vo ◽  
Jung-Min Pyun ◽  
Eva Bagyinszky ◽  
Seong S.A. An ◽  
Sang Y. Kim

Background: Presenilin 1 (PSEN1) was suggested as the most common causative gene of early onset Alzheimer’s Disease (AD). Methods: Patient who presented progressive memory decline in her 40s was enrolled in this study. A broad battery of neuropsychological tests and neuroimaging was applied to make the diagnosis. Genetic tests were performed in the patient to evaluate possible mutations using whole exome sequencing. The pathogenic nature of missense mutation and its 3D protein structure prediction were performed by in silico prediction programs. Results: A pathogenic mutation in PSEN1 (NM_000021.3: c.1027T>C p.Ala285Val), which was found in a Korean EOAD patient. Magnetic resonance imaging scan showed mild left temporal lobe atrophy. Hypometabolism appeared through 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) scanning in bilateral temporal and parietal lobe, and 18F-Florbetaben-PET (FBB-PET) showed increased amyloid deposition in bilateral frontal, parietal, temporal lobe and hence presumed preclinical AD. Protein modeling showed that the p.Ala285Val is located in the random coil region and could result in extra stress in this region, resulting in the replacement of an alanine residue with a valine. This prediction was confirmed previous in vitro studies that the p.Trp165Cys resulted in an elevated Aβ42/Aβ40 ratio in both COS-1 and HEK293 cell lines compared that of wild-type control. Conclusion: Together, the clinical characteristics and the effect of the mutation would facilitate our understanding of PSEN1 in AD pathogenesis for the disease diagnosis and treatment. Future in vivo study is needed to evaluate the role of PSEN1 p.Ala285Val mutation in AD progression.


Author(s):  
Trang Mai Tong ◽  
Thuy Thi Hong Dao ◽  
Loc Phuoc Doan ◽  
Dat Thanh Nguyen ◽  
Quynh-Tho Thi Nguyen ◽  
...  

2010 ◽  
Vol 468 (1) ◽  
pp. 34-37 ◽  
Author(s):  
Jifeng Guo ◽  
Jiaohua Wei ◽  
Shusheng Liao ◽  
Lei Wang ◽  
Hong Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document