Identification and functional analysis of inhibitor of NF-κB kinase (IKK) from Scylla paramamosain: The first evidence of three IKKs in crab species and their expression profiles under biotic and abiotic stresses

2018 ◽  
Vol 84 ◽  
pp. 199-212 ◽  
Author(s):  
Mei Jiang ◽  
Dan-Dan Tu ◽  
Wen-Bin Gu ◽  
Yi-Lian Zhou ◽  
Qi-Hui Zhu ◽  
...  
2021 ◽  
pp. 1-15
Author(s):  
Zengzhi Si ◽  
Yake Qiao ◽  
Kai Zhang ◽  
Zhixin Ji ◽  
Jinling Han

Sweetpotato, <i>Ipomoea batatas</i> (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes’ expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that <i>IbNBS75</i>, <i>IbNBS219</i>, and <i>IbNBS256</i> respond to stem nematode infection; <i>Ib­NBS240</i>, <i>IbNBS90</i>, and <i>IbNBS80</i> respond to cold stress, while <i>IbNBS208</i>, <i>IbNBS71</i>, and <i>IbNBS159</i> respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


2020 ◽  
Author(s):  
Chong Yang ◽  
Juanjuan Li ◽  
Faisal Islam ◽  
Luyang Hu ◽  
Jiansu Wang ◽  
...  

Abstract Background: WRKY transcription factors play important roles in various physiological processes and stress responses in flowering plants. However, the information about WRKY genes in Helianthus annuus L. (common sunflower) is limited. Results: Ninety WRKY (HaWRKY) genes were identified and renamed according to their locations on chromosomes. Further phylogenetic analyses classified them into four main groups including a species-specific WKKY group and HaWRKY genes within same group or subgroup generally showed similar exon-intron structures and motif compositions. The tandem and segmental duplication possibly contributed to the diversity and expansion of HaWRKY gene families. Synteny analyses of sunflower WRKY genes provided deep insight to the evolution of HaWRKY genes. Transcriptomic and qRT-PCR analyses of HaWRKY genes displayed distinct expression patterns in different plant tissues, as well as under various abiotic and biotic stresses. Conclusions: Ninety WRKY (HaWRKY) genes were identified from H. annuus L. and classified into four groups. Structures of HaWRKY proteins and their evolutionary characteristics were also investigated. The characterization of HaWRKY genes and their expression profiles under biotic and abiotic stresses in this study provide a foundation for further functional analyses of these genes. Therefore, these functional genes related to increasing the plant tolerance or improving the crop quality, could be applied for the crop improvement..


2018 ◽  
Author(s):  
Yongkai Li ◽  
Xiaojie Cheng ◽  
Yaqin Fu ◽  
Qinqin Wu ◽  
Yuli Guo ◽  
...  

Cell walls play an important role in the structure and morphology of plants as well as stress response, including various biotic and abiotic stresses. Although the comprehensive analysis of genes involved in cellulose synthase have been performed in model plants, such as Arabidopsis thaliana and rice, information regarding cellulose synthase-like (Csl) genes in maize is extremely limited. In this study, a total of 56 members of Csl gene family were identified in maize genome, which were classified into six subfamilies. Analysis of gene structure and conserved motif indicated functional similarities among the ZmCsl proteins within the same subfamily. Additionally, the 56 ZmCsl genes were dispersed on 10 chromosomes. The expression patterns of ZmCsl genes in different tissues using the transcriptome data revealed that most of ZmCsl genes had a relatively high expression in root and tassel tissues. Moreover, the expression profiles of ZmCsl genes under drought and re-watering indicated that the expression of ZmCsl genes were mainly responsive to early stage of drought stress. The protein-protein interaction network of ZmCsl genes proposed some potential interacted proteins. The data presented a comprehensive survey of Csl gene family in maize. The detailed description of maize Csl genes will be beneficial to understand their structural, functional, and evolutionary features. Importantly, we have described the differential expression profiles of these members across different tissues and under drought. This information will provide an important foundation for studying the roles of these ZmCsl genes in response to biotic and abiotic stresses.


2020 ◽  
Author(s):  
Chong Yang ◽  
Juanjuan Li ◽  
Faisal Islam ◽  
Luyang Hu ◽  
Jiansu Wang ◽  
...  

Abstract Background: WRKY transcription factors play important roles in various physiological processes and stress responses in flowering plants. However, the information about WRKY genes in Helianthus annuus L. (common sunflower) is limited. Results: Ninety WRKY (HaWRKY) genes were identified and renamed according to their locations on chromosomes. Further phylogenetic analyses classified them into four main groups including a species-specific WKKY group and HaWRKY genes within same group or subgroup generally showed similar exon-intron structures and motif compositions. The tandem and segmental duplication possibly contributed to the diversity and expansion of HaWRKY gene families. Synteny analyses of sunflower WRKY genes provided deep insight to the evolution of HaWRKY genes. Transcriptomic and qRT-PCR analyses of HaWRKY genes displayed distinct expression patterns in different plant tissues, as well as under various abiotic and biotic stresses. Conclusions: Ninety WRKY (HaWRKY) genes were identified from H. annuus L. and classified into four groups. Structures of HaWRKY proteins and their evolutionary characteristics were also investigated. The characterization of HaWRKY genes and their expression profiles under biotic and abiotic stresses in this study provide a foundation for further functional analyses of these genes and will be beneficial to crop improvement.


2003 ◽  
Vol 44 (11) ◽  
pp. 1246-1252 ◽  
Author(s):  
Yoshihiro Narusaka ◽  
Mari Narusaka ◽  
Motoaki Seki ◽  
Miki Fujita ◽  
Junko Ishida ◽  
...  

2016 ◽  
Vol 6 (12) ◽  
pp. 3951-3961 ◽  
Author(s):  
Weina Wang ◽  
Youlu Yuan ◽  
Can Yang ◽  
Shuaipeng Geng ◽  
Quan Sun ◽  
...  

Abstract Elucidating the mechanism of resistance to biotic and abiotic stress is of great importance in cotton. In this study, a gene containing the NAC domain, designated GbNAC1, was identified from Gossypium barbadense L. Homologous sequence alignment indicated that GbNAC1 belongs to the TERN subgroup. GbNAC1 protein localized to the cell nucleus. GbNAC1 was expressed in roots, stems, and leaves, and was especially highly expressed in vascular bundles. Functional analysis showed that cotton resistance to Verticillium wilt was reduced when the GbNAC1 gene was silenced using the virus-induced gene silencing (VIGS) method. GbNAC1-overexpressing Arabidopsis showed enhanced resistance to Verticillium dahliae compared to wild-type. Thus, GbNAC1 is involved in the positive regulation of resistance to Verticillium wilt. In addition, analysis of GbNAC1-overexpressing Arabidopsis under different stress treatments indicated that it is involved in plant growth, development, and response to various abiotic stresses (ABA, mannitol, and NaCl). This suggests that GbNAC1 plays an important role in resistance to biotic and abiotic stresses in cotton. This study provides a foundation for further study of the function of NAC genes in cotton and other plants.


PLoS ONE ◽  
2019 ◽  
Vol 14 (7) ◽  
pp. e0219775 ◽  
Author(s):  
Jingyuan Zheng ◽  
Feng Liu ◽  
Chunhui Zhu ◽  
Xuefeng Li ◽  
Xiongze Dai ◽  
...  

2018 ◽  
Author(s):  
Yongkai Li ◽  
Xiaojie Cheng ◽  
Yaqin Fu ◽  
Qinqin Wu ◽  
Yuli Guo ◽  
...  

Cell walls play an important role in the structure and morphology of plants as well as stress response, including various biotic and abiotic stresses. Although the comprehensive analysis of genes involved in cellulose synthase have been performed in model plants, such as Arabidopsis thaliana and rice, information regarding cellulose synthase-like (Csl) genes in maize is extremely limited. In this study, a total of 56 members of Csl gene family were identified in maize genome, which were classified into six subfamilies. Analysis of gene structure and conserved motif indicated functional similarities among the ZmCsl proteins within the same subfamily. Additionally, the 56 ZmCsl genes were dispersed on 10 chromosomes. The expression patterns of ZmCsl genes in different tissues using the transcriptome data revealed that most of ZmCsl genes had a relatively high expression in root and tassel tissues. Moreover, the expression profiles of ZmCsl genes under drought and re-watering indicated that the expression of ZmCsl genes were mainly responsive to early stage of drought stress. The protein-protein interaction network of ZmCsl genes proposed some potential interacted proteins. The data presented a comprehensive survey of Csl gene family in maize. The detailed description of maize Csl genes will be beneficial to understand their structural, functional, and evolutionary features. Importantly, we have described the differential expression profiles of these members across different tissues and under drought. This information will provide an important foundation for studying the roles of these ZmCsl genes in response to biotic and abiotic stresses.


Sign in / Sign up

Export Citation Format

Share Document