Vitamin D3 modulates yellow catfish (Pelteobagrus fulvidraco) immune function in vivo and in vitro and this involves the vitamin D3/VDR-type I interferon axis

2020 ◽  
Vol 107 ◽  
pp. 103644
Author(s):  
Ke Cheng ◽  
Chunsong Ma ◽  
Xun Guo ◽  
Yanqing Huang ◽  
Rong Tang ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Xianwei Ma ◽  
Ming Yuan ◽  
Yulan Yi ◽  
Guoke Liu ◽  
...  

AbstractUbiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.


2007 ◽  
Vol 81 (17) ◽  
pp. 9100-9108 ◽  
Author(s):  
Nigel Bourne ◽  
Frank Scholle ◽  
Maria Carlan Silva ◽  
Shannan L. Rossi ◽  
Nathan Dewsbury ◽  
...  

ABSTRACT Infection of cells with flaviviruses in vitro is reduced by pretreatment with small amounts of type I interferon (IFN-α/β). Similarly, pretreatment of animals with IFN and experiments using mice defective in IFN signaling have indicated a role for IFN in controlling flavivirus disease in vivo. These data, along with findings that flavivirus-infected cells block IFN signaling, suggest that flavivirus infection can trigger an IFN response. To investigate IFN gene induction by the very first cells infected during in vivo infection with the flavivirus West Nile virus (WNV), we infected mice with high-titer preparations of WNV virus-like particles (VLPs), which initiate viral genome replication in cells but fail to spread. These studies demonstrated a brisk production of IFN in vivo, with peak levels of over 1,000 units/ml detected in sera between 8 and 24 h after inoculation by either the intraperitoneal or footpad route. The IFN response was dependent on genome replication, and WNV genomes and WNV antigen-positive cells were readily detected in the popliteal lymph nodes (pLN) of VLP-inoculated mice. High levels of IFN mRNA transcripts and functional IFN were also produced in VLP-inoculated IFN regulatory factor 3 null (IRF3−/−) mice, indicating that IFN production was independent of the IRF3 pathways to IFN gene transcription, consistent with the IFN type produced (predominantly α).


Agri Gene ◽  
2017 ◽  
Vol 5 ◽  
pp. 19-26 ◽  
Author(s):  
Jianjun Feng ◽  
Peng Lin ◽  
Yilei Wang ◽  
Songlin Guo ◽  
Ziping Zhang ◽  
...  

Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 262 ◽  
Author(s):  
Ana Luisa Reis ◽  
Lynnette C. Goatley ◽  
Tamara Jabbar ◽  
Elisabeth Lopez ◽  
Anusyah Rathakrishnan ◽  
...  

Live attenuated vaccines are considered to be the fastest route to the development of a safe and efficacious African swine fever (ASF) vaccine. Infection with the naturally attenuated OURT88/3 strain induces protection against challenge with virulent isolates from the same or closely related genotypes. However, adverse clinical signs following immunisation have been observed. Here, we attempted to increase the OURT88/3 safety profile by deleting I329L, a gene previously shown to inhibit the host innate immune response. The resulting virus, OURT88/3ΔI329L, was tested in vitro to evaluate the replication and expression of type I interferon (IFN) and in vivo by immunisation and lethal challenge experiments in pigs. No differences were observed regarding replication; however, increased amounts of both IFN-β and IFN-α were observed in macrophages infected with the deletion mutant virus. Unexpectedly, the deletion of I329L markedly reduced protection against challenge with the virulent OURT88/1 isolate. This was associated with a decrease in both antibody levels against VP72 and the number of IFN-γ-producing cells in the blood of non-protected animals. Furthermore, a significant increase in IL-10 levels in serum was observed in pigs immunised with OURT88/3ΔI329L following challenge. Interestingly, the deletion of the I329L gene failed to attenuate the virulent Georgia/2007 isolate.


Blood ◽  
2010 ◽  
Vol 115 (16) ◽  
pp. 3287-3295 ◽  
Author(s):  
Tekla Hornakova ◽  
Sabina Chiaretti ◽  
Muriel M. Lemaire ◽  
Robin Foà ◽  
Raouf Ben Abdelali ◽  
...  

Abstract Activating mutations in JAK1 have been reported in acute lymphoblastic leukemias (ALLs). In this study, we found a type I interferon (IFN) transcriptional signature in JAK1 mutation-positive human ALL samples. This signature was recapitulated in vitro by the expression of JAK1 mutants in BW5147 and BaF3 hematopoietic cell lines. Binding of JAK1 to the IFN receptor was essential because mutations in the FERM domain abrogated this effect. Beside the constitutive activation of the type I IFN signaling cascade, JAK1 mutations also strongly potentiated the response to IFN in vitro. Typically, the proliferation of cell lines expressing JAK1A634D was abrogated by type I IFNs. Interestingly, we found that different JAK1 mutations differentially potentiate responses to type I IFNs or to interleukin-9, another cytokine using JAK1 to mediate its effects. This suggests that the type of mutation influences the specificity of the effect on distinct cytokine receptor signaling. Finally, we also showed in an in vivo leukemia model that cells expressing JAK1A634D are hypersensitive to the antiproliferative and antitumorigenic effect of type I IFN, suggesting that type I IFNs should be considered as a potential therapy for ALL with JAK1-activating mutations.


2016 ◽  
Vol 90 (7) ◽  
pp. 3342-3354 ◽  
Author(s):  
Philip T. Lange ◽  
Eric J. Darrah ◽  
Emily P. Vonderhaar ◽  
Wadzanai P. Mboko ◽  
Michaela M. Rekow ◽  
...  

ABSTRACTThe cholesterol synthesis pathway is a ubiquitous cellular biosynthetic pathway that is attenuated therapeutically by statins. Importantly, type I interferon (IFN), a major antiviral mediator, also depresses the cholesterol synthesis pathway. Here we demonstrate that attenuation of cholesterol synthesis decreases gammaherpesvirus replication in primary macrophagesin vitroand reactivation from peritoneal exudate cellsin vivo. Specifically, the reduced availability of the intermediates required for protein prenylation was responsible for decreased gammaherpesvirus replication in statin-treated primary macrophages. We also demonstrate that statin treatment of a chronically infected host attenuates gammaherpesvirus latency in a route-of-infection-specific manner. Unexpectedly, we found that the antiviral effects of statins are counteracted by type I IFN. Our studies suggest that type I IFN signaling counteracts the antiviral nature of the subdued cholesterol synthesis pathway and offer a novel insight into the utility of statins as antiviral agents.IMPORTANCEStatins are cholesterol synthesis inhibitors that are therapeutically administered to 12.5% of the U.S. population. Statins attenuate the replication of diverse viruses in culture; however, this attenuation is not always obvious in an intact animal model. Further, it is not clear whether statins alter parameters of highly prevalent chronic herpesvirus infections. We show that statin treatment attenuated gammaherpesvirus replication in primary immune cells and during chronic infection of an intact host. Further, we demonstrate that type I interferon signaling counteracts the antiviral effects of statins. Considering the fact that type I interferon decreases the activity of the cholesterol synthesis pathway, it is intriguing to speculate that gammaherpesviruses have evolved to usurp the type I interferon pathway to compensate for the decreased cholesterol synthesis activity.


2015 ◽  
Vol 90 (4) ◽  
pp. 1988-1996 ◽  
Author(s):  
Shauna A. Marvin ◽  
C. Theodore Huerta ◽  
Bridgett Sharp ◽  
Pamela Freiden ◽  
Troy D. Cline ◽  
...  

ABSTRACTLittle is known about intrinsic epithelial cell responses against astrovirus infection. Here we show that human astrovirus type 1 (HAstV-1) infection induces type I interferon (beta interferon [IFN-β]) production in differentiated Caco2 cells, which not only inhibits viral replication by blocking positive-strand viral RNA and capsid protein synthesis but also protects against HAstV-1-increased barrier permeability. Excitingly, we found similar resultsin vivousing a murine astrovirus (MuAstV) model, providing new evidence that virus-induced type I IFNs may protect against astrovirus replication and pathogenesisin vivo.IMPORTANCEHuman astroviruses are a major cause of pediatric diarrhea, yet little is known about the immune response. Here we show that type I interferon limits astrovirus infection and preserves barrier permeability bothin vitroandin vivo. Importantly, we characterized a new mouse model for studying astrovirus replication and pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document