Growth and accelerated differentiation of mesenchymal stem cells on graphene-oxide-coated titanate with dexamethasone on surface of titanium implants

2017 ◽  
Vol 33 (5) ◽  
pp. 525-535 ◽  
Author(s):  
Na Ren ◽  
Jianhua Li ◽  
Jichuan Qiu ◽  
Mei Yan ◽  
Haiyun Liu ◽  
...  
2022 ◽  
Vol 12 ◽  
Author(s):  
Aifeng Liu ◽  
Jixin Chen ◽  
Juntao Zhang ◽  
Chao Zhang ◽  
Qinxin Zhou ◽  
...  

AimThis study is to investigate the effects of umbilical cord mesenchymal stem cells (UCMSCs) loaded with the graphene oxide (GO) granular lubrication on ameliorating inflammatory responses and osteoporosis of the subchondral bone in knee osteoarthritis (KOA) animal models.MethodsThe KOA animal models were established using modified papain joint injection. 24 male New Zealand rabbits were classified into the blank control group, GO group, UCMSCs group, and GO + UCMSCs group, respectively. The concentration in serum and articular fluid nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), type II collagen (COL-II), and glycosaminoglycan (GAG) was detected using ELISA, followed by the dissection of femoral condyles and staining of HE and Micro-CT for observation via the microscope.ResultsGO granular lubrication and UCMSCs repaired the KOA animal models. NO, IL-6, TNF-α, GAG, and COL-II showed optimal improvement performance in the GO + UCMSCs group, with statistical significance in contrast to the blank group (P <0.01). Whereas, there was a great difference in levels of inflammatory factors in serum and joint fluid. Micro-CT scan results revealed the greatest efficacy of the GO + UCMSCs group in improving joint surface damage and subchondral bone osteoporosis. HE staining pathology for femoral condyles revealed that the cartilage repair effect in GO + UCMSCs, UCMSCs, GO, and blank groups were graded down.ConclusionUCMSCs loaded with graphene oxide granular lubrication can promote the secretion of chondrocytes, reduce the level of joint inflammation, ameliorate osteoporosis of the subchondral bone, and facilitate cartilage repair.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Jin-Woo Park ◽  
Yusuke Tsutsumi ◽  
Eui-Kyun Park

The manganese (Mn) ion has recently been probed as a potential candidate element for the surface chemistry modification of titanium (Ti) implants in order to develop a more osteogenic surface with the expectation of taking advantage of its strong binding affinity to the integrins on bone-forming cells. However, the exact mechanism of how Mn enhances osteogenesis when introduced into the surface of Ti implants is not clearly understood. This study investigated the corrosion resistance and potential osteogenic capacity of a Mn-incorporated Ti surface as determined by electrochemical measurement and examining the behaviors of human mesenchymal stem cells (MSCs) in a clinically available sandblasted/acid-etched (SLA) oral implant surface intended for future biomedical applications. The surface that resulted from wet chemical treatment exhibited the formation of a Mn-containing nanostructured TiO2 anatase thin film in the SLA implant and improved corrosion resistance. The Mn-incorporated SLA surface displayed sustained Mn ion release and enhanced osteogenesis-related MSC function, which enhanced early cellular events such as spreading, focal adhesion, and mRNA expression of critical adhesion-related genes and promoted full human MSC differentiation into mature osteoblasts. Our findings indicate that surface Mn modification by wet chemical treatment is an effective approach to produce a Ti implant surface with increased osteogenic capacity through the promotion of the osteogenic differentiation of MSCs. The improved corrosion resistance of the resultant surface is yet another important benefit of being able to provide favorable osseointegration interface stability with an increased barrier effect.


2021 ◽  
Author(s):  
Aifeng Liu ◽  
Jixin Chen ◽  
Shuwei Gong ◽  
Qiang Wei ◽  
Ye Yuan

Abstract The main role of the scaffold materials is to enable cells to survive in the scaffold binding as while as to further promote their proliferation and differentiation ability. For mesenchymal stem cell, the scaffold could provide an environment for them to maintain their phenotype, and synthesize all necessary molecules and proteins. Generally, scaffold materials for stem cell need to possess basic characteristics such as high porosity, large surface area, surface rigidity and biodegradability. Thus, the two-dimensional graphene oxide (GO) with oxygen-containing functional groups may be suitable scaffold materials for mesenchymal stem cell culture.MethodsIn this study, the effect of GO on the value-added differentiation activity of mesenchymal stem cell was systematically investigated. ResultsIt was found that low concentration of GO and sufficient concentration of umbilical cord mesenchymal stem cells are suitable for the second Co-culture. Furthermore, the addition of hyaluronic acid will make this culture more evenly distributed. ConclusionsThe adsorption of GO on umbilical cord mesenchymal stem cells can also make the two closely linked, which avoids the impact of animal joint activities on cells.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 782 ◽  
Author(s):  
Oana-Elena Nicolaescu ◽  
Adina Turcu-Stiolica ◽  
Renata-Maria Varut ◽  
Andreea-Gabriela Mocanu ◽  
Ionela Belu ◽  
...  

There is an increased interest in developing biocomposite implants with high biocompatibility in order to be used as grafts or prostheses in orthopedic surgery. The purpose of the study was to determine the biocompatibility of titanium implants coated with synthesized hydroxyapatite-alendronate composites. The implants were obtained using Matrix Assisted Pulsed Laser Evaporation technique (MAPLE). The hydroxyapatite-alendronate composites were synthesized using the wet precipitation method. Immunofluorescence microscopy showed that composites support mesenchymal stem cells (MSCs) adhesion. Bone cells as well as human MSCs adhere to hydroxyapatite (HA)-based thin films obtained by matrix assisted laser deposition onto titanium. Alendronate doping into the films increased the number of cell-biomaterial focal points as compared to HA only. Thus, the synthesis of hydroxyapatite-alendronate composite (HA-AL) may be considered a viable solution for including the bisphosphonate on the surface of metallic prosthetic components used in orthopedics.


2009 ◽  
Vol 35 (3) ◽  
pp. 106-129 ◽  
Author(s):  
Mona K. Marei ◽  
Manal M. Saad ◽  
Adham M. El-Ashwah ◽  
Rania M. El-Backly ◽  
Mohammed A. Al-Khodary

Abstract Tissue engineering in the head and neck area, presents numerous advantages. One of the most remarkable advantages is that regeneration of only a small amount of tissue can be highly beneficial to the patient, particularly in the field of periodontal tissue regeneration. For decades, successful osseointegration has provided thousands of restorations that maintain normal function. With the increasing need to utilize dental implants for growing patients and enhance their function to simulate normal tooth physiology and proprioception, there appears to be an urgent need for the concept of periodontal tissue regeneration around dental implants. In the present work, 5 goats were used for immediate implant placement post canine teeth extraction. Each goat received 2 implant fixtures; the control side received a porous hollow root-form poly (DL-Lactide-co-Glycolide) scaffold around the titanium fixture, and the experimental side received the same scaffold but seeded with autogenous bone marrow–derived mesenchymal stem cells. One animal was killed 10 days postoperatively, and the others were killed after 1 month. The results showed that on the experimental side, periodontal-like tissue with newly formed bone was demonstrated both at 10 days and after 1 month, while the control specimens showed early signs of connective tissue regeneration around the titanium fixture at 10 days, but was not shown in the 1 month specimens. It can be concluded that undifferentiated mesenchymal stem cells were capable of differentiating to provide the 3 critical tissues required for periodontal tissue regeneration: cementum, bone, and periodontal ligament. This work may provide a new approach for periodontal tissue regeneration.


Nanoscale ◽  
2015 ◽  
Vol 7 (27) ◽  
pp. 11642-11651 ◽  
Author(s):  
Jong Ho Lee ◽  
Yong Cheol Shin ◽  
Oh Seong Jin ◽  
Seok Hee Kang ◽  
Yu-Shik Hwang ◽  
...  

Reduced graphene oxide-coated hydroxyapatite (rGO-coated HAp) composites stimulated the spontaneous osteogenesis in human mesenchymal stem cells in the absence of osteoinductive agents.


Sign in / Sign up

Export Citation Format

Share Document